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Optimizing spin-orbit splittings in InSb Majorana nanowires
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Semiconductor-superconductor heterostructures represent a promising platform for the detection of Majorana
zero modes and subsequently the processing of quantum information using their exotic non-Abelian statistics.
Theoretical modeling of such low-dimensional heterostructures is generally based on phenomenological effective
models. However, a more microscopic understanding of the band structure and, especially, of the spin-orbit
coupling of electrons in these devices is important for optimizing their parameters for applications in quantum
computing. In this paper, we approach this problem by first obtaining a highly accurate effective tight-binding
model of bulk InSb from ab initio calculations. This model is symmetrized and correctly reproduces both the
band structure and the wave function character. It is then used to simulate slabs of InSb in external electric fields.
The results of this simulation are used to determine a growth direction for InSb nanowires that optimizes the
conditions for the experimental realization of Majorana zero modes.
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I. INTRODUCTION

The search for Majorana zero modes (MZMs) in solid-
state systems attracted a lot of interest [1–4] due to the
theoretical prediction that defects binding MZMs manifest
non-Abelian quantum statistics [5–8], and, as such, would
open up the possibility to realize topological quantum
computing [9–13]. Topological quantum computing schemes
use topological degrees of freedom to encode informa-
tion. Since topological degrees of freedom are inherently
nonlocal, they do not couple to local operations. There-
fore, the error rates in topological quantum computing
schemes are exponentially suppressed with distance between
anyons (i.e., MZMs) and inverse temperature, providing an
enormous advantage over conventional quantum computing
platforms.

In condensed matter physics, MZMs were first discussed
in the context of fractional quantum Hall effect [5] and
topological p-wave superconductors/superfluids [7,14–17].
Later on, it was shown that topological superconductivity can
be realized in various heterostructures [18–24]. In particu-
lar, semiconductor-superconductor heterostructures are very
promising, and arguably the simplest, experimental systems
for realizing MZMs. Indeed, the recipe for engineering topo-
logical superconductivity in semiconductor-superconductor
heterostructures involves three main ingredients: spin-orbit
coupling (SOC), Zeeman splitting, and proximity induced
s-wave pairing [19–22]. The appropriate combination of these
ingredients leads to an effective Hamiltonian equivalent to that
of a spinless p-wave superconductor.

Theoretical predictions for realizing topological supercon-
ductivity in semiconductor nanowires coupled to conven-
tional s-wave superconductors [21,22] have sparked signif-
icant experimental activity [23,25–32]. The first tunneling
spectroscopy experiment aiming to detect MZMs was per-
formed in Delft with InSb zincblende nanowires that were
proximity-coupled to NbTiN [23]. Later on, the observation
of zero-bias peaks in finite magnetic field consistent with the

theoretical predictions [33–43] was reported by many other
experimental groups [26–29]. Device fabrication process used
in Refs. [23,26–29] involved self-assembled nanowires as the
basis for the semiconducting part, contacted with an s-wave
superconductor. It was later found that a better approach is
to use molecular beam epitaxy to grow core-shell nanowires
with a semiconducting core and a metallic shell, which
was successfully implemented in InAs-Al heterostructures
[44,45].

Realization of MZMs in both contact and epitaxially
proximitized semiconducting wires depends crucially on the
strength of SOC [21,22]. In particular, of major importance
for zincblende (ZB) and wurtzite wires in current experimental
setups is the size of the spin splitting �E in the first conduction
band near the band minimum at the Brillouin zone (BZ)
center [see Fig. 1(a)]. It is thus desirable to optimize the
heterostructures and predict the growth conditions for which
this spin splitting is maximized.

In this paper we address this optimization problem using
the example of ZB InSb as a prototypical material for
MZM realization. Although the ZB structure lacks inversion
symmetry, the spin splitting of the first conduction band in
the bulk material is only cubic in momentum k, resulting in
negligible �E in the bulk [46]. Thus, it is necessary to generate
linear in momentum spin splitting terms in the Hamiltonian.
Such terms arise in low-dimensional structures [47] due
to bulk inversion asymmetry (BIA) that gives linear in
k contributions to spin splittings as a result of quantum
confinement, and structural inversion asymmetry (SIA) that
is associated with the effective electric field that arises due
to the macroscopic asymmetry of the structure [48]. This
effective field can be due to the changes in the crystal potential,
or a real macroscopic electric field, applied, for example by
gating.

In stand-alone slabs or quantum wells of InSb both BIA and
SIA are generally present. The two contributions can combine
constructively or destructively depending on the direction of
the slab [49,50], as was shown in photogalvanic experiments
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FIG. 1. (a) Spin splitting �E. (b) A slab of InSb put in external

electric field, orthogonal to the slab.

for (001) (that is, orthogonal to the [001] direction) ZB GaAs
quantum wells [51,52]. In wires the BIA and SIA terms, being
hard to distinguish, combine into a single effective term. It
is convenient to think of the wire as cut out of a slab. In
this case the full effective linear in k splitting becomes a
combination of the term that is present in the slab and an
additional term arising from confinement of a 2D system
to 1D.

Various studies of InSb band structure were carried out
since the late fifties [53]. Most of these studies were limited
to symmetry-dictated k · p expansions [54] around the center
of the BZ [55,56]. These models are tailored to match the
experimentally known features of the band structure exactly,
however they are limited to a close vicinity of a special
point in k space. The next step of approximation is provided
by the tight-binding (TB) approximation, which is capable
of describing selected bands throughout the BZ. A set of
models with short range hoppings, called empirical TB (ETB)
models, which are based on symmetry alone, with the hopping
parameters matched to reproduce experimental data, is often
used in the field of semiconductors [57–62]. These models
have a drawback of not reproducing the wave function
correctly.

Since the correct representation of the electronic wave
function is required when aiming to simulate MZMs in a
realistic setup, the TB model in the current paper is derived
from an ab initio calculation. This model, having long-range
hoppings, accurately reproduces the energy spectrum of InSb
and by derivation is matched to the wave function obtained in
the ab initio calculation. To achieve the required accuracy to
reliably extract subtle effects such as spin splittings, our ab
initio simulations are performed using a modification of the
HSE06 hybrid scheme [63–65], and additional symmetrization
of the resultant TB model is done, allowing for a band structure
description on a sub-meV scale. This method of constructing
TB models can be applied generally even for more complicated
materials, for which ETBs are not readily available, and can
be used to compute SOC effects, as illustrated below. It can
also be used for a high-throughput search of materials that can
be more suitable for realizing MZMs.

To optimize spin splittings, the obtained TB model is used
to simulate different stand-alone slabs of InSb. We find that
in the absence of surface relaxation confinement alone results
in spin splittings that vanish quickly with increasing slab size.
External electric field is further applied orthogonal to the slab
[see Fig. 1(b)], and the splitting �E is studied in various
directions in 2D momentum space. Arguments are presented
that allow us to draw conclusions about optimal directions for
the wire growth to maximize �E. While the actual numbers
provided for the splittings will change depending on the

FIG. 2. Crystal structure of InSb. The conventional FCC unit cell
is shown with In in blue and Sb in brown.

experimental setup, the dependence of susceptibility of spin
splittings to the external fields on the wire growth direction is
expected to be a universal property [66].

The paper is organized as follows: In Sec. II we present
our first-principles simulations, followed in Sec. III by the
derivation of TB models. In Sec. IV, we present results
obtained for spin splittings in finite systems. Conclusions are
presented in Sec. V.

II. FIRST-PRINCIPLES CALCULATIONS

The crystal structure of InSb is ZB, which is equivalent to
face-centered cubic (FCC) with one formula unit per primitive
unit cell. The conventional unit cell consists of four primitive
unit cells as shown in Fig. 2. The space group is Td (#216).

To obtain the TB model of InSb, we carried out first-
principles calculations using hybrid functionals. It is well
known that simpler approximations, like the local density
approximation (LDA) or the generalized gradient approxi-
mation (GGA), lead to a metallic band structure that results
from incorrect band ordering at the �-point [67]. Hybrid
functionals [68] and GW [69,70] can be used to fix the band
ordering [71–73], and both schemes are generally accepted to
be very reliable for computing band gaps of semiconductors
nowadays.

In particular, the HSE03/HSE06 hybrid functionals [63–65]
proved to be successful in computing band structures of ZB
semiconductors with SOC taken into account [71]. These
hybrid functionals are constructed by replacing a quarter of
the density functional contribution (in our case the Perdew-
Burke-Ernzerhof (PBE) functional [74]) short-range exchange
with its Hartree-Fock counterpart, leaving the long-range
part unchanged. In the most common HSE06 scheme, the
separation into long- and short-range parts is defined by

the screening parameter μ = 0.2 Å
−1

. In this work, however,

we use the value μ = 0.23 Å
−1

, which was reported in
Ref. [71] to fit the band gap of InSb to its experimental
value. That work reported an underestimation by roughly
15% of the Luttinger parameters obtained from such a
calculation compared to experimentally reported values. Here,
however, we aim at constructing tight-binding models and
the hybrid calculation is an optimal starting point for this
purpose.

First-principles calculations were performed for exper-
imental lattice constants of Ref. [77] using projector
augmented-wave (PAW) basis sets [78,79] implemented within
the VASP code [80,81]. The energy cutoff for the PAW
potentials was taken to be 280 eV. Gaussian smearing of
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TABLE I. Comparison of our first-principles calculations to
experiments. Results for two mesh-densities (6 × 6 × 6 and 8 × 8 ×
8) are given to illustrate convergence. The labels c and v refer to
conduction and valence bands. All values are given in units of eV.

Eg �SO E�c
7
− E�v

8
E�c

8
− E�v

8

6 × 6 × 6 0.241 0.744 3.077 3.488
8 × 8 × 8 0.236 0.746 3.070 3.481
Experiment [75] 0.235 0.81 [76] 3.141 3.533

0.05 eV width and a �-centered 6 × 6 × 6 k-point mesh were
used to perform BZ integrations. A finer 8 × 8 × 8 mesh
was used to check the convergence of our calculations, and
we found that it resulted in only a small ≈2% (see Table I
for actual numbers) decrease of the band gap, leading to
an even better match with the experimental value. Overall,
we see that the 6 × 6 × 6 results are sufficiently converged
and, given the significant increase in computational cost for
finer meshes, we report results for this mesh throughout this
paper.

The bonding p states and the antibonding s and p states,
forming the topmost valence and lowest conduction bands,
are of most interest to us for the present purpose. Ignoring
spin-orbit coupling, the s states at the � point transform
according to a one-dimensional representation �1 of the
symmetry group Td , while the p states transform as a three-
dimensional representation �15, giving rise to the threefold
degenerate multiplets �v

15 and �c
15 of valence and conduction

states. When SOC is switched on, the bands at � are classified
according to double group representations. The s states now
form a �6 representation that roughly corresponds to the
|S,j = 1/2,jz = ±1/2〉 states. The p states, which were
sixfold (with spin) degenerate without SOC, now split into
a four-dimensional representation �

v,c
8 , which accommodates

the heavy (|P,j = 3/2, jz = ±3/2〉) and light (|P,j = 3/2,
jz = ±1/2〉) holes, and a two-dimensional representation �

v,c
7

referred to as the split-off band (|P,j = 1/2,jz = ±1/2〉). The
band structure with SOC taken into account is shown in Fig. 3,
and exhibits the correct band ordering in the BZ center. The
results are in excellent agreement with experiments as shown
in Table I.

The bulk band gap Eg is only within ≈2.5% of the
experimental value [75]. Similar agreement is seen for other
experimentally known energy differences, with the only
exception being the spin-orbit splitting of hole states �SO =
E�v

8
− E�v

7
, which is only within ≈8% of its generally accepted

value [76]. We noticed that by decreasing the mixing parameter
μ, we can obtain better agreement for �SO, but at the price of
increasing the value of the fundamental gap Eg.

The effective mass that we obtain from this calculation
is m∗ ≈ 0.014me, where me is the electron mass. This value
is within the range of reported experimental values [76] that
is from 0.012me to 0.015me, and agrees perfectly with the
generally accepted value of 0.0135me, proving the reliability
of our first-principles calculation. In the following we will use
this calculation to construct TB models to study finite-size
effects on the spin splittings of the first conduction band �6.

FIG. 3. Band structure of InSb with SOC. The Fermi level is set
at 0 eV and labels of irreducible representations at the � point are also
shown. Black solid lines are the ab initio band structure. Red dashed
lines are the band structure obtained from a tight-binding model of
Sec. III.

III. TIGHT-BINDING MODELS

Ab initio simulations with hybrid functionals are compu-
tationally very demanding, which renders the direct ab initio
simulation of wires and large heterostructures unfeasible. To
perform such simulations one thus needs to employ tight-
binding (TB) models, which we introduce in this section.
Being self-consistent, first-principles calculations generally
contain much more information than tight-binding models.
However, the tight-binding approximation is sufficient for
many purposes. Aiming to describe spin splittings, that is,
band structure effects, it is reasonable to assume that a good
TB model will reproduce them correctly.

We first discuss the existing TB schemes, one based on
fitting to experimental data that is widely used in semiconduc-
tor physics, and another applied more commonly in materials
modeling based on ab initio calculations. We then introduce a
scheme for constructing TB models that is a hybrid of these
two methods, where we aim to describe both the spectrum and
the wave functions of the material reliably. A TB model for
InSb obtained with this hybrid scheme is introduced, which
will form the basis for obtaining the results of subsequent
sections.

A. Empirical tight-binding models

Tight-binding modeling of semiconductors is usually done
using ETB models, where the symmetry-constrained parame-
ters are fitted to experimental data. A variety of parametrization
schemes exists [57–61] and it is straightforward to generate
new ETB models by, for example, supplementing the exper-
imental data with the results of first-principles calculations.
In the absence of experimental data, the fitting is done solely
based on first-principles calculations.

For ZB binary materials several standard ETB schemes have
been used. The so-called sp3s∗ model [59] contains cation and
anion s and p states, plus one additional s state. This model fits
the band structure around the � point reasonably well, giving
a good description of the hole bands. The electronic bands
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tend to have too large effective masses, and away from the �

point the bands tend to flatten out. To avoid these problems,
the sp3d5s∗ scheme [60] can be used, which includes d states
and allows for a better description of both electron and hole
bands throughout the BZ.

ETB models are simple since they contain only local and
nearest neighbor hoppings. This makes them ideally suited
to simulate the effects of disorder [82–84], and they are
the models of choice for many semiconductor simulations.
However, fitting the band structure well is not the only
requirement for a TB model. In particular, a good TB should
reproduce not only the energy spectrum, but also other
observables correctly. Since the calculation of observables is
done using the Bloch eigenstates of the TB model, a natural
requirement for the TB model is to represent the main features
of the wave function of electrons in the material correctly.

Since ETB models are based on fitting the spectrum only,
and since there are many different fits that will reasonably
reproduce the band structure but not the wave function, ETB
models do not necessarily satisfy this requirement. Models
that incorporate the correct character of the electronic wave
functions can however be derived from ab initio simulations.

B. Tight-binding models based on Wannier functions

Here we describe a method used to construct interpolated
band structures and to extract tight-binding parameters from
ab initio calculations. This method is based on the works
of Refs. [85,86] and is implemented numerically in the
Wannier90 [87] software package. Rooted in the construction
of Wannier functions (WFs) from the Bloch states obtained
from first-principles calculations, this method guarantees that
the resultant TB model has the correct wave function character.

We briefly review the concept of maximally localized
WFs [85,88], focusing on the extraction of TB parameters. The
problem is stated like this: Given a band structure obtained by
first-principles calculation, construct a TB model that correctly
describes the band structure and wave function character for
a set of bands that fall within some chosen energy window,
referred to as the outer window.

At each k point, a certain number Nk � N of bands,
where N is the number of bands of the desired TB model,
falls into the outer window. The procedure of Ref. [86] is
initiated by a guess for the N orbitals (or some localized
states) gn(r) that dominate the character of these bands. These
N orbitals are then projected onto the Nk bands, forming a set
of nonorthonormal states

|φnk〉 =
Nk∑

m=1

Amn|ψmk〉, (1)

where Amn(k) = 〈ψmk|gn〉 is an Nk × N matrix.
If the set of orbitals was well chosen, the matrix Smn =

〈φmk|φnk〉 is invertible and a new set of orthonormal Bloch
states can be obtained by Löwdin orthonormalization

|ψ (0)
nk 〉 =

N∑
m=1

(S−1/2)mn|φmk〉. (2)

Using the lattice-periodic parts of these N states u
(0)
nk =

e−ik·rψ (0)
nk one further disentangles them by minimizing the

spread functional

F = 1

Nkp

∑
k,b

ωb

N∑
m=1

(
1 −

N∑
n=1

|〈umk|unk+b〉|2
)

, (3)

where Nkp is the number of k points used for the discretization
of the BZ. The set of vectors b with weights ωb is used for
finite difference discretization of derivatives in k space (see
Ref. [86] for details). Minimization is done self-consistently
on the whole k mesh with respect to possible choices of N

representatives out of Nk states [86].
In practice, one often wants to guarantee the presence of

some band character at certain k points in the model. For
this reason a second (inner) energy window is chosen within
the outer window. This inner window contains the features of
interest and at each k point encloses Mk bands. In that case the
above disentanglement procedure is done for Nk − Mk bands
only.

The minimization of the spread functional is most intuitive
in 1D. The functional is obviously minimized when at each
consecutive k point a set of N states is chosen to maximize the
overlap with the set of states from the previous k point. Thus,
minimizing F leads to the smoothest possible choice of N unk
functions to represent the states of interest within the chosen
energy window.

Once N Bloch states are disentangled from the rest of
the spectrum, there remains freedom to rotate these states
at each k point by a unitary (gauge) transformation Uk(N )
to obtain the smoothest possible Bloch states that span the
same Hilbert space, as the initial ones. The smoother the
Bloch states, the better localized WFs are obtained after
Fourier transforming these states. The optimization is done by
minimizing the total real space spread of the WFs, producing
so-called maximally localized WFs [85]. While for trivial
band topologies, these WFs are exponentially localized [85], a
nontrivial band structure can present obstructions to obtaining
exponentially localized WFs [89,90], and special care must be
taken to handle these cases.

After a set of smooth Bloch states, and hence, exponen-
tially localized WFs are obtained, the Hamiltonian matrix is
calculated at each k point within the chosen subspace of N

states [86]. The TB Hamiltonian becomes

Hnm(R) = 〈wn(0)|H |wm(R)〉, (4)

where wn(R) is the WF obtained as a result of the above
procedure, located in the unit cell indexed by a lattice vector R.

Unlike ETB, thus obtained TB models usually have hop-
pings to distant neighbors, although their magnitude decreases
for well-localized WFs. Such models are used extensively
in condensed matter physics [88]. However, they have a
problem—the WFs do not necessarily have the symmetry
of the chemical orbitals, or of the basis functions of the
corresponding irreducible representations, leading to small
symmetry breaking, which results in visible absence of
symmetry-protected degeneracies in the TB Hamiltonian.
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Being small (typically of the order of a few tens of meV
for a good model), this symmetry breaking can be neglected
for many applications. But when dealing with subtle low
energy scale effects, like the spin splittings we study in the
present paper, the magnitude of the symmetry breaking is often
larger than the effects we are after. For this reason, additional
symmetrization of the WFs is required.

C. Symmetric tight-binding models

The symmetry of the WFs in the above procedure already
gets broken in the process of disentangling the bands of interest
from the rest of the spectrum. As a first indication of this
symmetry breaking the charge centers of WFs

rn = 〈wn(0)|r̂|wm(0)〉 (5)

usually shift away from the positions of the orbitals that are
used for the initial projection. As a result, the Wannier centers
form a lattice that is different from the original one, usually
leading to breaking of lattice symmetries in the resultant TB
model.

Fixing the Wannier centers on the atomic sites improves
the symmetry in some cases, as was also mentioned in the
independent work of Ref. [91], which suggests using Lagrange
multipliers to enforce fixed Wannier charge center position in
the minimization scheme. We notice, however, that the centers
shift even before maximal localization, and thus including such
Lagrange multipliers can prevent the algorithm from finding
optimally localized Wannier orbitals in such cases. Moreover,
fixing the symmetric positions of the Wannier centers does not
guarantee that the resultant TB model becomes symmetric.

Here we solve this problem by identifying an outer energy
window for which the centers do not move as a result of
disentanglement (see Appendix A for details). This choice
of the window also works successfully for other binary ZB
semiconductors. To obtain better similarity between the WFs
and chemical orbitals the symmetry of the hopping parameters
should also be taken into account. While Lagrange multipliers
can also be used to force hopping terms that violate the
symmetry to vanish, we find that using our approach of
appropriately tuning the outer energy window remedies this
problem as well. In particular, the interorbital on-site matrix
elements that break the symmetry become small and the
hoppings within a unit cell are as expected for the orbitals
in the crystal field.

While the TB model used in this paper was obtained by
manipulations with energy windows, Lagrange multipliers
can in principle be introduced when minimizing the spread
of the WFs not only to fix the centers of the WFs, but also
to force the hoppings that would vanish by symmetry in
the case of chemical orbitals, be zero. Including more and
more distant neighbors will eventually result in WFs that
represent very good approximations to chemical orbitals. It
should be stressed that in order to obtain better localization
of the symmetric WFs it is still necessary to find an energy
window, in which the symmetry conditions are not broken too
strongly. Besides, this approach can only work, provided the
initial energy window and projection capture the necessary
orbital character throughout the BZ.

From this procedure we obtain TB models that have
two desired properties: They correctly reproduce the wave
functions and are written in the basis that is close to that of
atomic orbitals. If such TB models are created based on ab
initio simulations separately for the bulk materials, and for
interfaces/surfaces using superlattices, then by gluing them
together one can model realistic devices and heterostructures.

Another benefit of this type of model is that they can be
constructed without SOC taken into account, which in many
cases saves an enormous amount of computational effort. If
the resultant WFs are orbital-like, being well localized, it is
reasonable to approximate the effect of SOC as an on-site term,
constrained by symmetry. The form of the local SOC for p,
d, and f orbitals is known [84,92,93], and each of them has
only one parameter that can be fitted to either experimental
or first-principles data. This fitting is in the flavor of ETB but
has much less free parameters and starts with the correct wave
function behavior. Finally, having the correct wave function
behavior, these models are ideally suited for calculations of
g factors and finite-size induced spin splittings, being poten-
tially very useful for a wide range of applications.

The TB model for InSb obtained according to the above
procedure is detailed in Appendix A. The effective mass
obtained with this model is m∗ ≈ 0.015me, changing slightly
from its first principles value. For the purposes of the present
paper we used only s and p states to create the TB model, and
implemented local approximation (see Appendix A) to the
SOC. In ETB models this approximation in sp3s∗ models is
known to miss small linear in k splittings in the hole bands [94]
due to omission of the d states, but the description of the
electron bands that are of interest in this work is still reliable.

IV. SPIN-ORBIT SPLITTINGS

In this section we discuss induced spin splittings in InSb
thin films. For this purpose slabs of various thicknesses and
orientations are considered. This allows for the evaluation
of the finite size effects on the spin splitting (Sec. IV B).
More importantly, the discussion of the splittings induced by
applying an external electric field in the direction, orthogonal
to the slab is presented (Sec. IV C). This allows to identify
both BIA and SIA contributions to the spin splittings in the
slab geometry and fit them to the analytic symmetry-based
models. In a wire both these contributions combine to give the
effective splitting

�E = m∗α∗2

2�2
(6)

where α∗ is an effective 1D Rashba parameter. Wire directions,
for which this splitting and its susceptibility to the external
electric field is maximized are also identified.

In the seminal work of Dresselhaus [46] it was shown that
no linear in k spin splitting terms appear for the electronic
band in the vicinity of the BZ center. The splitting is cubic in
k and the effective Hamiltonian for the electronic band can be
written as [52]

HZB(k) = �
2k2

2m∗ + HS (7)
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(a) (b)

FIG. 4. Bulk band structure of InSb along the (a) [210] direction
and (b) [110] direction. The largest spin splitting of the conduction
band occurs along the [210] direction.

where

HS = γ
[
kx

(
k2
y − k2

z

)
σx + ky

(
k2
z − k2

y

)
σy + kz

(
k2
x − k2

y

)
σz

]
(8)

and γ = 760 eV/Å
−3

is the generally accepted value [47]. This
expression predicts the largest splitting for the bulk conduction
band to appear in the [110] direction. However, this conclusion
holds only for small momenta. For larger k the largest splitting
is found to occur in the [210] direction, as illustrated in Fig. 4.
Similar findings were previously reported in Ref. [95] for GaAs
and GaSb.

A. Method

Inclusion of an electric field into the bulk calculation is a
tedious task [96], since the electrostatic potential does not have
the lattice periodicity and the translation invariance is broken
along the field direction. The consideration is significantly
simplified in the case of a slab calculation, when the electric
field is applied orthogonal to the slab, as illustrated in Fig. 1(b).
The two in-plane momenta are still good quantum numbers and
the field-induced spin splittings are thus most easily accessible
in a slab calculation.

Since ab initio simulations using hybrid functionals are
limited to very small systems, TB models of Sec. III need to
be used to determine the spin splittings in the presence of an
electric field. We consider two different slabs: (001) and (110)
ones, which are perpendicular to the [001] and [110] directions
correspondingly. To double check our conclusions for the (110)
slab, we also considered a symmetrically equivalent slab (11̄0),
orthogonal to the [11̄0] direction.

The effect of electrostatic potential is approximated by
a contribution to the on-site potential. This approximation,
generally accepted in the TB modeling [97], requires some
justification here. Unlike the usual TB, where the orbitals are
assumed to be very strongly localized, our TB model is based
on the WFs that have a finite spread. However, as clarified in
the Appendix A, these WFs are also well localized and their
spread is smaller than interatomic distance, so that the local
approximation for the electrostatic potential still holds.

B. Finite size splittings

The surfaces of the slabs cause complications that need to
be properly dealt with. Real material surfaces and interfaces
can be very complex due to lattice reconstruction, local
strains, and disorder. These effects are not captured by the
present TB model. While some attempts to model such effects
from-first-principles can be done for GaAs and AlAs, where
GGA still produces the correct band ordering, the use of hybrid
functionals needed for such a calculation for InSb is extremely
demanding computationally. For the purpose of this paper we
are, however, not interested in a microscopic description of
surfaces and interfaces but rather in bulk effects at a safe
distance from any surface or interface. Changes of the crystal
structure at the surface/interface create an effective intrinsic
(electric) field within the bulk of the slab, and the magnitude
of this field depends on the design of the heterostructure.
Also, in the case of epitaxially grown devices [44] the
effects of interface lattice reconstruction and interface disorder
are minimized, so that the intrinsic field strength is solely
determined by the SIA of the heterostructure and its material
composition. In what follows we analyze structures that are
much thicker than the region potentially influenced by the
changes in the lattice structure at the surface. This is verified
by checking that the wave function of the lowest conduction
band is localized in the bulk of the material of interest, quickly
decaying towards the surface. For this reason in our study it
is sufficient to only study the effects of intrinsic electric fields
on the spin splittings of the first conduction band.

We thus approximate the surface by truncating all hoppings
into the vacuum region. The truncation, however, generates
in-gap surface states due to unsaturated (dangling) covalent
bonds for certain surface orientations. Since InSb is not a
topological insulator, all in-gap surface states can be avoided
by local changes to the Hamiltonian at the surface without
much influence on the bulk wave function that is of primary
interest. In a real material the dangling bond states are usually
eliminated by either surface reconstruction or by saturation
with adatoms. The effect of atoms saturating the dangling bond
can be introduced in a TB model by passivation. This passiva-
tion of the dangling bonds can be done in several ways [98].

For the slab orientations considered in this paper, dangling
bonds are most visible at the (001) surface, as illustrated in
Fig. 5 for a 50 unit cells thick slab. Changing the on-site
energy of s and px orbitals of In atoms on the bottom surface
by ε(In)

s = ε(In)
px

= 5 eV, and the energy of py and pz orbitals of
Sb atoms on the top surface by ε(Sb)

py
= ε(Sb)

pz
= −5 eV removes

the dangling bond states from the gap region with negligible
influence on the rest of the spectrum. The choice of these
orbitals for passivation is dictated by their dominating spectral
weight in the dangling bond surface states. For the (110) and
(11̄0) surfaces, the effect of the dangling bonds is not as drastic.
Passivation was done for the (110) surface by changing the
on-site energy by ε(In)

s = ε(In)
py

= ε(In)
pz

= 1.67 eV and ε(Sb)
py

=
ε(Sb)
pz

= −2.5 eV at both surfaces. Similarly, the on-site energy
on both surfaces was changed by ε(In)

s = 5 eV and ε(Sb)
px

=
ε(Sb)
py

= ε(Sb)
pz

= −1.67 eV for the (11̄0) slab.
The illustration of Fig. 6 shows the finite-size-induced spin

splitting with the above described passivations. The surface-
induced effect clearly disappears with growing slab widths.
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FIG. 5. Band structure of a ≈162 Å-thick [001] slab of InSb.
Color scheme describes the contribution of the atoms from the top
(red) and bottom (green) surfaces to the weight of the subband
wave function. Top panel: without passivation. Bottom panel: with
passivation. X refers to the point (π,0) and M to (π,π ) of the 2D BZ
of the slab.

Since the wires used in Majorana experiments are typically
thick (of order 50–100 nm [23]), we neglect this splitting in
the following.

C. Field-induced spin-orbit splitting

Applying the electric field to TB-modeled slab allows one to
scan the band structure in momentum directions perpendicular
to the field. The calculations were done for the slabs of 35 unit
cell thickness (≈115 Å) for the (001) slab, and of 50 unit
cells (≈113 Å) for the (110) and (11̄0) slabs. As discussed
above, the finite size induced SO splitting becomes negligibly
small at these slab thicknesses and, therefore, we concentrate
on the electric field induced contribution, subtracting the
finite-size induced contribution. That is, �E = �EU − �E0,
where �EU is the full splitting seen in the slab subject to the
potential difference U , and �E0 is the finite-size (zero external
field) contribution. We note that for each slab direction the
application of an external potential leads to a decrease of the

FIG. 6. Scaling of surface-induced (no external electric field) part
of the spin splittings �E0 along the kx ||[100] direction with slab
thickness. (a) [001] slab. (b) [110] slab. (c) [11̄0] slab. In each case,
the zero-field contribution decays with increasing number of layers.

band gap, and a critical value of U exists, for which the band
gap closes.

We induce a electric field in the nanostructure by applying
a potential difference of 0.2 or 0.4 V between the upper and
lower surface of the slab. The effects of screening are not taken
into account here, and the electric field inside the slab is simply
given by the voltage difference divided by the thickness d. The
corresponding electric field strengths |E | are 1.75 mV/Å and
3.5 mV/Å for the three directions. We now proceed to the
detailed analysis of the numerical results.

1. (001) slab

The crystal structure of this slab has the point group
symmetry D2d . When the electric field is added orthogonal
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TABLE II. The values of spin splitting parameters obtained from
fitting �E of Eqs. (11) and (14). The slab thickness is ≈115 Å in all
cases.

E [meV/Å] 0 1.75 3.5

[meV Å]
(001) |α| 108 385 730

|β| 20.4 120 139

[meV2 Å
2
]

(110) α2
1 58.4 1.81 × 105 6.41 × 105

α2
2 + β2 − α2

1 3.54 × 104 1.88 × 104 1.75 × 104

[meV2 Å
2
]

(11̄0) α2
1 25.2 2.05 × 105 7.51 × 105

α2
2 + β2 − α2

1 7.17 × 104 8.41 × 104 1.15 × 105

to the slab the symmetry reduces to C2v , which consists
of two mirror symmetries and a C2 rotation, which is the
product of the mirrors. Taking the x (y) axis in the slab
to be along the [100] ([010]) direction, as illustrated in
Fig. 1(a), the mirror symmetries are the ones taking M1 :
(x,y) → (y,x) and M2 : (x,y) → (−y, − x). In addition to
point group symmetries, time reversal should be taken into
account. The spin components si = (�/2)σi transform accord-
ing to C2 : (sx,sy,sz) → (−sx, − sy,sz), M1 : (sx,sy,sz) →
(−sy, − sx,sz) and M2 : (sx,sy,sz) → (sy,sx,sz). Taking into
account that spin flips under time reversal, and that momentum
k transforms as a vector, the linear in k spin spitting part of
the Hamiltonian can be uniquely determined. The resultant
Hamiltonian for the conduction band in the vicinity of the �

point to the second order in k is [52]

H(001) = �
2
(
k2
x + k2

y

)
2m∗ + α(kxσy − kyσx) + β(kyσy − kxσx)

(9)
where kx and ky correspond to the 〈10〉 and 〈01〉 directions in
the reciprocal space of the slab. The first spin splitting term,
called the Rashba term [48], describes SIA. The second spin
splitting term is the Dresselhaus term describing BIA [47,52].
The Rashba coefficient α can be manipulated by electric
fields [51], while the coefficient β, according to Eq. (8)
is (assuming only linear in k terms in the spin splitting)
β = γ 〈k2

z 〉, where the average is taken with respect to the full
three-dimensional lowest electronic subband wave function.

The dispersion is given by

ε± = �
2
(
k2
x + k2

y

)
2m∗ ±

√
(αky + βkx)2 + (αkx + βky)2. (10)

Setting kx = k cos φ and ky = k sin φ the analytic expression
for the spin splitting can be obtained

�E = m∗

2�2
(α2 + β2 + 2αβ sin 2θ ). (11)

This expression can be fitted to the results of the TB calculation
illustrated in Fig. 7 to give numerical estimates for α and β.
For this estimation we subtract the surface contribution �E0

to �E, since passivation used to saturate the surface dangling
bonds is not a good approximation for the realistic surface
effects. The results are summarized in Table II. It can be seen

FIG. 7. Spin splitting �E − �E0 induced by an applied electric
field for the (001) slab (35 layers, 115 Å). The field (blue: 1.75 mV/Å;
red: 3.5 mV/Å) is oriented along [001]. θ of Eq. (11) is the angle
from the kx axis in the slab BZ. High-symmetry directions within the
slab are marked.

that not only α, but β as well is influenced by the electric
field. This can be expected since the full 3D-wave function
is changed by the presence of the electric field. Moreover,
the dependence of �E on the direction within the slab is
apparent in Fig. 7: The splitting for the [110] direction is
twice larger than that in the [−110] direction. This result
is especially important for gate-defined nanowires [99,100]
in two-dimensional electron systems. The optimal direction
for such wires created in (001) thin films is [110].

From Fig. 7 it can be seen that the largest spin splitting
occurs along the [110] direction, where Dresselhaus and
Rashba terms combine to give an effective 1D Hamiltonian

H[110] = �
2k2

2m∗ ± α∗
√

2
k(σy − σx) (12)

where α∗ = |α| + |β|. This Hamiltonian can be used to
describe [110] wires of ZB InSb subject to the [001] electric
field. The variation of the crystal potential at the wire interface
creates an effective electric field, whose direction can be
manipulated by choosing varying the growth direction.

It should be noted that in the Hamiltonian of Eq. (12),
obtained from the 2D dispersion, an additional term that
appears due to confinement of the wire in 1D is neglected.
The motivation for this is the following. As described above,
in the absence of an external electric field the splitting decays
quickly with increasing wire thickness, and the corresponding
Dresselhaus term tends to zero. Application of the electric
field significantly modifies the shape of the subband wave
function in the direction of the field, but in the transverse
direction one can expect it to be the same. Thus, one can
argue that if the confinement effect induces negligible spin
splitting in wide slabs, the confinement of the thick wire can
also generate only very small spin splitting. This argument is
also supported by the calculations of the Ref. [101], where no
linear in momentum spin splitting of the first conduction band
was found in [100] and [111] ZB GaAs wires, and the splitting

115317-8



OPTIMIZING SPIN-ORBIT SPLITTINGS IN InSb . . . PHYSICAL REVIEW B 93, 115317 (2016)

FIG. 8. Spin splitting �E − �E0 induced by an applied electric
field for the (110) slab (50 layers, 113 Å). The field (blue: 1.75 mV/Å;
red: 3.5 mV/Å) is oriented along [110]. θ of Eq. (14) is the angle
from the kx axis in the slab BZ. High-symmetry directions within the
slab are marked.

in the [110] direction was found to be small and decreasing
with the radius of the wire.

2. (110) slab

The point group for this slab [50,52] in the presence of ex-
ternal field is Cs , with only one mirror plane (x,y) → (−x,y),
where x is along the [11̄0] direction of the conventional
unit cell and y is along [001]. This mirror symmetry takes
(sx,sy,sz) → (sx, − sy, − sz). The linear in k terms consistent
with this symmetry and time reversal are kxσz, kxσy , and kyσx .
The corresponding Hamiltonian is

H(110) = �
2(k2

x + k2
y)

2m∗ + α1kyσx + α2kxσy + βkxσz, (13)

where α1,2 now includes also contributions due to the bulk
inversion asymmetry, since averaging the bulk splitting of
Eq. (8) with respect to the 3D-wave function gives α2 =
γ 〈k1〉/(2

√
2), where k1 is along the [110] direction of the

conventional unit cell. The corresponding spin splitting is
given by

�E = m∗

2�2

(
α2

1 + (
α2

1 − α2
2 + β2

)
cos2 θ

)
, (14)

where θ is the angle in the (110) slab counted from the
[11̄0] direction. The values of �E corresponding to this
slab obtained from a TB simulation are illustrated in Fig. 8.
The fit for α1,2 and β is given in Table II. While the angle
dependence of �E is less apparent in this case than for
the (001) slab, a comparison with the results of Fig. 7 for
the [−100] direction suggests that �E depends on the field
direction for the structures in question: For approximately
the same slab thicknesses the corresponding splitting in the
[110] field is slightly larger than that in the [001] field for the
illustrated field strengths.

There appears to be little dependence of �E on the angle for
this slab direction. To verify this we simulated a symmetry-

FIG. 9. Spin splitting �E − �E0 induced by an applied electric
field for the (11̄0)-slab (50 layers, 113 Å). The field (blue: 1.75 mV/Å;
red: 3.5 mV/Å) is oriented along [11̄0]. θ is the angle from the kx

axis in the slab BZ [see Eq. (14)]. High-symmetry directions within
the slab are marked.

equivalent (11̄0) slab. The illustration of the corresponding
spin splittings is given in Fig. 9. Apart from the finite size
zero-field effects, mediated by the differences in passivation,
this simulation also predicts little variation of �E with θ .

The (11̄0) slab also contains the [111] wire that was used
in the original MZM experiment [23]. The data presented in
Figs. 7–9 indicates that this wire direction should have almost
optimal spin splitting (see Fig. 10 for the illustration of several
optimal wire directions). Magnetoconductance measurements
were performed recently [102] to estimate the size of the
spin splitting in the [111] wires grown in a setup relevant
for MZM. The measured range for the spin splitting is
�E ≈ 0.25–1 meV. These values can be compared to the data
obtained in the present TB simulation to give an estimate for
the strength of electric field inside the wire.

Figure 13 in Appendix B shows that �E ∝ |E |2 for |E | →
0. The dependence is almost the same for all directions within
the (110) slab. Using the effective mass of m∗ = 0.015me

obtained in the TB model and the experimentally reported
range of �E, one can back out the electric field needed to
generate such a SOC: e|E | ≈ 2–4 meV/Å. Thus, the method
presented in this paper can be used to estimate the size of
electric field inside a material, which is important for the

(a)
<110>

<111>

<1-10>
<1-10>

(b)

FIG. 10. Some of the optimal wire/field directions. (a) A [110]
wire in in the [11̄0] field. (b) A [111] wire in in the [11̄0] field.
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experiments trying to control SOC couplings by gating the
nanowire.

V. CONCLUSIONS AND OUTLOOK

The problem of optimizing spin splittings in the semicon-
ductor is one of the main ingredients for the possible realization
of MZMs in proximity coupled semiconductor nanowires. In
this paper we addressed this problem using a TB model of
InSb derived from the modified version of the highly accurate
HSE06 hybrid functional. This allowed for the detailed study
of finite-size and field-induced spin splitting in slabs of InSb.
These results are used to argue about the optimal growth
directions for the wires.

The method presented in this paper is based on the TB
models matched not only to reproduce the band structure but
also the correct wave function throughout the BZ. Although
local approximation to SOC was used here, these models
can be straightforwardly extended (to be reported elsewhere)
to include nonlocal SOC effects. The method can be easily
extended beyond ZB compounds, and can for example be
applied to wurtzite InAs nanowires, which are of particular
interest in the light of the epitaxially-grown superconductor-
semiconductor interfaces [44].

This method is also optimally suited for the search of
other semiconductor materials, suitable for spintronics [103]
or Majorana experiments. Further validation of these models
versus experimental results suggests the possible route for
reliable simulation of realistic devices, similar to those used
for realizing exotic topological states which are not accessible
to the ab initio approaches.
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APPENDIX A: PARAMETERS FOR THE 14 × 14
TIGHT-BINDING MODEL

Here we provide the details on the TB model used in this
paper. The model is 7 × 7 (14 × 14) in the absence (presence)
of SOC. It gives a very good description (see Fig. 3) of the three
topmost valence and four lowest conduction bands throughout
the BZ.

We describe the way to obtain the model with symmetric
parameters using wannier90 [87] and the hybrid functionals for
InSb. However, the same scheme, with little adjustments of the
energy window width, that take into account the differences
in bandwidths and the fundamental energy gap, works for

other binary zincblende semiconductors. For all materials,
experimental lattice constants were used, and the screening
parameters of the hybrid functional calculations were adjusted
for the best fit of the fundamental gap.

For all the TB models the adopted convention is

Hnm(k) =
∑

R

eik·R〈0n|Ĥ |Rm〉, (A1)

FIG. 11. Scaling of the field-induced part of the spin splittings
�EU − �E0 with slab thickness. In each case, a potential of 0.4 V
was applied, meaning the field strength was weaker in thicker slabs.
The number of unit cells in each slab is 30 (blue), 50 (red), and 80
(green). (a) (001) slab in in the [001] field. (b) (110) slab in in the
[110] field. (c) (11̄0) slab in the [11̄0] field.
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where the matrix element in the sum stands for the probability
amplitude of an electron hopping from orbital m of unit
cell R to orbital n of the unit cell at the origin 0. The
summation is limited to local, first- and second-neighbor
hoppings. The complete tight-binding parameters are available
as Supplemental Material Ref. [106].

A hybrid functional calculation is first carried out without
SOC. Following the discussion of the Sec. III B the outer

FIG. 12. Scaling of spin splittings with field. The slab is 50 unit
cells wide in all cases. The potential differences across the slab are
0 V (blue), 0.2 V (red), and 0.4 V (green). (a) (001) slab in in the
[001] field. (b) (110) slab in in the [110] field. (c) (11̄0) slab in the
[11̄0] field.

energy window is fixed to be from −9 eV to 10.5 eV relative to
the Fermi level. The inner window is from −0.3 eV to 3.1 eV
relative to the Fermi level. The local orbitals for the projection
are chosen to be the s and 3p orbitals put on the In site at
(0,0,0) and 3p orbitals put on the Sb site at ( 1

4 , 1
4 , 1

4 ) in the
units of lattice constant, taken to be a = 6.479 Å according
to the Ref. [77]. No maximal localization is done, only the
disentanglement.

As a result one obtains a 7 × 7 model for InSb without SOC,
which is also provided as Supplemental Material Ref. [106].
The resultant WFs are well localized having the maximum

spread 〈r2〉 − 〈r〉2 = 4.84 Å
2
. Given that the distance to

the nearest neighbor is 4.58 Å, this means that to a good
approximation the SOC coupling can be considered to be
on-site, and it also motivates the implementation of external
electric field as an on-site energy change.

Local SOC allows to fix time-reversal symmetry by consid-
ering a representation to be block diagonal in spin space. The
SOC is generated only by the p orbitals, and in the present
basis takes the form [92]

HSO = λj

2

⎛
⎜⎜⎜⎜⎜⎝

0 −i 0 0 0 1
i 0 0 0 0 −i

0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ (A2)

where j stands for either In or Sb and the matrix is written
in {px ↑ ,py ↑ ,pz ↑ ,px ↓ ,py ↓ ,pz ↓}. The two parameters
λj are then fitted to the ab initio band structure with SOC
included. We used the values λIn = 0.226 eV and λSb =
0.5181 eV [106].

APPENDIX B: SCALING OF SPIN SPLITTINGS WITH
FIELD AND SLAB SIZE

In this Appendix we present additional data showing how
the Rashba SO splitting discussed in Sec. IV depends on slab
thickness (Fig. 11) and strength of the applied field (Figs. 12
and 13). It can be seen that the thickness dependence data
suggests that the wire thickness should also be taken into
account for optimizing spin splittings for realizing MZMs.

FIG. 13. Scaling of the total spin splitting �E with field, for a
slab of 50 layers orthogonal to the [110] direction. The splitting is
measured in the [100] direction.
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