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Here we provide more details of the crystal structure of MoTe2 at 100k, first-principles calculations,
the nodal lines and Weyl points. Furthermore, the topological invariants (Z2 indices, Chern numbers
and winding numbers) are computed for the time-reversal symmetric planes, Weyl points and nodal
lines, respectively. More analysis of the surface states and Fermi arcs are presented in the last.

I. CRYSTAL STRUCTURE OF MOTE2

To obtain the low temperature crystal structure of
MoTe2 we grew samples by slow cooling and performed
diffraction measurements at 100 K to obtain the lattice
constants, lattice space group, and atomic coordinates.

A. The crystal structure of orthorhombic MoTe2

The crystal structure of orthorhombic MoTe2, the 1T’
form, was determined experimentally at 100 K by sin-
gle crystal X-ray diffraction. This is a so far (with the
exception of the very recent paper of Ref[1]) uncharac-
terized structure for MoTe2, whose crystal structure has
been reported previously for a hexagonal symmetry phase
(the α form), 2H MoTe2, and a monoclinic symmetry
phase (the β form), 1T” MoTe2 [2–4]. The crystal struc-
ture of the previously reported monoclinic form is related
to the structure of orthorhombic WTe2 [2], but is dis-
torted and therefore is not isostructural with it. Thus,
the orthorhombic 1T’ form of MoTe2 characterized here,
isostructural with orthorhombic WTe2, is the third char-
acterized structural variant of MoTe2 known; it therefore
can be designated alternatively as the γ phase.

B. Experimental details

The crystals of orthorhombic MoTe2 were made by
slow cooling (at 1.5 K/hr) a Te-rich flux (∼95 % Te)
from 1000 C to 820 C and then centrifuging off the flux.
They were then annealed in a sealed evacuated quartz
tube for ∼12 hours in a thermal gradient, with the crys-
tals at 400 C and the cold end of the tube at about 60 C.

Single-crystal data were collected at 100 K on a Bruker
Apex II diffractometer with Mo Kα1 (=0.71073 Å) radi-
ation. Data were collected over a full sphere of reciprocal
space with 0.5◦ scans in ω with an exposure time of 30 s
per frame. The SMART software was used for data ac-
quisition. Intensities were extracted and corrected for
Lorentz and polarization effects with the SAINT pro-
gram. Numerical absorption corrections were accom-

plished with XPREP which is based on face-indexed ab-
sorption [5]. With the SHELXTL package, the crystal
structure was solved using direct methods and refined by
full-matrix least-squares on F2 [6]. The largest peak in
the final ∆F map was 4.91 eÅ−3, 1.03 Åfrom Te1, and
the largest hole was -3.94 eÅ−3, located 0.98 Åfrom Mo1.
The crystal refinement and atomic parameters are given
in Tabs. I-II.

TABLE I. Single crystal crystallographic data for orthorhom-
bic MoTe2 at 100 K. This is the 1T’ or γ form.

Refined Formula MoTe2

F.W. (g/mol) 351.14

Space group; Z Pmn21(No.31); 4

a(Å) 3.4582(10)

b(Å) 6.3043(18)

c(Å) 13.859(4)

V(Å3) 302.1(2)

Absorption Correction Numerical

Extinction Coefficient None

θ range (deg) 3.55-29.566

No. reflections 2765

No. independent reflections 899

No. parameters 38

R1; wR2 (all I) 0.0579; 0.1223

Goodness of fit 1.004

Diffraction peak and hole (e-/Å3) 4.913; 3.941

C. Symmetries of the γ-phase

The crystal structure of γ-MoTe2 with 4 formula units
in the unit cell is shown in Fig. (1) in the main text.
The corresponding point group is C2v and there are three
symmetry operations: the symmorphic reflection Mx, the
non-symmorphic reflection My, and the non-symmorphic
C2z = MxMy rotation. The translation accompany-
ing the two non-symmorphic operations is (0.5, 0, 0.5) in
units of the lattice constants. Crucially, in the kz = 0
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TABLE II. Atomic coordinates and equivalent isotropic dis-
placement parameters for orthorhombic MoTe2 at 100 K.
Noncentrosymmetric space group Pmn21 . This is the 1T’ or
γ form. Ueq is defined as one-third of the trace of the orthog-
onalized Uij tensor (Å2).

Atom Wyckoff. Occupancy x y z Ueq

Mo(1) 2a 1 0 0.0297(6) 0.7384(6) 0.012(2)

Mo(2) 2a 1 0 0.6062(7) 0.2240(7) 0.014(2)

Te(1) 2a 1 0 0.2163(8) 0.1269(5) 0.015(2)

Te(2) 2a 1 0 0.6401(8) 0.8363(5) 0.012(2)

Te(3) 2a 1 0.5 0.1374(8) 0.8783(5) 0.014(2)

Te(4) 2a 1 0.5 0.7090(9) 0.0827(5) 0.010(2)

plane a little group exists at each point (kx, ky, 0) formed
by the product of time-reversal and C2z, C2T = T ∗C2z.
It is shown in Ref. [7, 8] that this symmetry allows (just
like in WTe2) for the presence of WPs in the kz = 0
plane.

II. DETAILS OF NUMERICAL CALCULATIONS

The electronic structure calculations have been car-
ried out using the all-electron WIEN2K package [9, 10].
A 15 × 8 × 3 mesh and the exchange-correlation func-
tional with a generalized gradient approximation (GGA)
parametrized by Perdew, Burke, and Ernzerhof (PBE)
have been used [11].

The results for the electronic band structure and topo-
logical invariants were verified versus the pseudopoten-
tial calculations done in VASP [12], using PAW [13, 14]
pseudopotentials with 4s24p65s14d5 and 5s25p4 valence
electron configurations for Mo and Te, respectively. Spin-
orbit coupling was included in the pseudopotentials, and
the PBE approximation [11] was used. Self-consistent
field calculations were performed on a 16 × 10 × 4 Γ-
centered grid, with a Gaussian smearing of width 0.05 eV.
The energy cut-off was chosen at 450 eV. Additional
calculations were done using a 18 × 15 × 9 Γ-centered
grid, with an energy cut-off of either 260 or 300 eV,
and also using a Gaussian smearing width of 0.05 eV.
The experimental lattice parameters listed in Tabs. I-II
are used in the calculations. To calculate the surface
states, Wannier functions based tight-binding models for
Mo 4d and Te 5p orbitals have been constructed [15, 16].
The topological invariants were verified with both tight-
binding and ab initio calculations, where the Z2Pack [17]
(http://z2pack.ethz.ch/doc) package was used for the
latter.

III. BAND STRUCTURE IN THE ABSENCE OF
SPIN-ORBIT COUPLING

The band structure of MoTe2 exhibits several topolog-
ical features in the absence of spin-orbit coupling (SOC).
A clear band inversion and multiple band crossings are
found in the band structure around EF along the ΓX
line, which is part of the ky = 0 mirror plane. We find
that the two bands N/2, N/2 + 1 (spin is not taken into
account) cross along the ΓX line, having opposite glide-
plane eigenvalues My = ±e−i(kx+kz)/2. Theoretical sym-
metry analysis [8] dictates the appearance of a line node
in the ky = 0 plane in case of a degeneracy on the ΓX
line. Indeed, in this plane we find two nodal lines, re-
lated by Mx. The degeneracy point found on the ΓX
line belongs to one of these nodal lines. In addition, 12
WPs between the N/2 and N/2 + 1 bands are found in
MoTe2 in the absence of SOC. Four of these points are
located in the kz = 0 plane, while the other eight appear
off-plane as two quartets, symmetrically located about
kz = 0. One in-plane point W1 and two out of plane
points W2, are listed in Tab. I of the main text, with the
other 9 points related to these by Mx and My.

IV. WEYL POINTS BETWEEN BANDS N AND
N + 1

As described in the main text, there are 4 Weyl points
(called W in the main text) formed by bands N and
N + 1 in MoTe2 for the structure reported in this paper.
The number N corresponds to the number of valence
electrons per unit cell. These points are of type-II, as
can be seen from the band dispersion obtained from first-
principles calculations. The dispersion for the linearized
Hamiltonian is illustrated in Fig. 1 clearly showing the
Weyl point at the boundary between electron and hole
pockets. A general type-II WP [7] Hamiltonian is written
in terms of the Pauli matrices σx,y,z and a kinetic term
described by a unit matrix I

H(k) =

3∑
i=1

viki I +

3∑
i,j=1

kiAi,jσj (1)

where there exists a cone of directions in k-space,
in which the first (kinetic) term of the Hamiltonian
dominates over the second (potential) one, that is
(
∑

i viki)
2 >

∑
j(
∑

i kiAi,j)
2. Fitting the theoretical

model derived from the symmetry analysis to the band
structure around the WPs obtained from ab initio calcu-
lations results in the following effective Hamiltonian for
the W WP

H(k) = v1kx+v2ky+(akx+bky)σy+(ckx+dky)σz+ekzσx
(2)

with parameters (in eVÅ) v1 = −3.39, v2 = 0.58, a = 0,
b = 0.78, c = 2.6, d = −0.58 and e = −0.0045. Since
there is a direction around which the kinetic energy domi-

nates (k̂ ‖ x̂), W is a type-II WP. If we limit our analysis

http://z2pack.ethz.ch/doc


3

FIG. 1. Linear fit of the Weyl node W in the kz = 0 plane.
The plane at zero energy corresponds to the location of EF.

FIG. 2. The gap between bands N and N + 1 in MoTe2 at
kz = 0. The gap is small but non-zero on the ky = 0 line,
signaling a region, where additional Weyl points can arise.
The point of zero gap at ky = 0.05 is the Weyl point W
described in the main text.

to the bands N and N + 1 forming only 4 WPs, then
MoTe2 would be the simplest possible example of a TR-
symmetric type-II WSM.

The previous study of Ref. [1] only considered cross-
ings of bands N and N + 1 and reported 8 type-II Weyl
points in MoTe2 in the kz = 0 plane. This discrepancy
arises due to the difference in the lattice parameters. Al-
though the difference is small, the 100 K crystal structure
reported here is close to the topological phase transition
point, where additional Weyl points appear in pairs of
opposite chirality from the ky = 0 mirror plane. This
can be seen in the Fig. 2, where the gap between the
bands N and N +1 is plotted in the region of interest for
kz = 0 cut of the Brillouin zone. A minor change in the
lattice constants can give rise to 4 additional type-II Weyl
points in the kz = 0 plane, as illustrated schematically
in Fig. 3. Extreme sensitivity of band structure topol-
ogy in MoTe2 and the fact that the results of Ref. [1] are
obtained for the different temperature structure suggest

FIG. 3. Schematic illustration of the possible topological
phase transition between the states of 4 and 8 type-II Weyl
points which can be driven by strain.

the possibility of temperature-driven topological phase
transitions in this material.

V. Z2 INVARIANTS AND THEIR RELATION
TO WEYL POINTS

We establish a connection between Z2 invariants used
for insulators and the existence of Weyl points. If the
usual Z2 invariant is nonzero only on one out of the 6
common high-symmetry time-reversal symmetric (TR)
planes (ki = 0 and ki = 0.5), the system has to exhibit
Weyl points. This is easy to see. Consider the TR planes
shown in the upper left panel of Fig. 4. Let only one of the
planes be Z2 non-trivial, so that it exhibits a quantum
spin Hall effect. The edge modes of the quantum spin
Hall effect on this plane can result from (a) a closed sur-
face Fermi surface such as in a weak or strong topological
insulator or (b) from a disconnected open surface Fermi
surface such as the Fermi arcs. Case (a), however, would
imply the existence of another nontrivial Z2 index on one
of the other TR planes (either parallel or perpendicular
to the non-trivial one), hence the only possibility is that
of an open Fermi arc surface state. This exercise also
reveals the canonical connection pattern between Weyl
points on the surface: the Fermi arcs will form the con-
tinuation of the quantum spin Hall edge states off the
high-symmetry plane.

In MoTe2 the valence bands and the conduction bands
(N and N+1th bands) are directly gapped on five out of
six TR planes, with the exception of the kz = 0 plane that
hosts four Weyl points. The appearance of Weyl points
and the connection of Fermi arcs can be deduced by ana-
lyzing the Z2 invariants [18] for the these five TR planes.
Fig. 4 shows the flow of Wannier centers [19–21] on the
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FIG. 4. Upper left panel: Six time-reversal symmetric planes
are shown in the Brillouin zone. The ki = 0, 0.5 planes are de-
noted by the red-, green-, and blue-colored sheets, for i = x, y
and z, respectively. Other panels show the flow of Wannier
charge centers for the five gapped planes. Panel (b): kx = 0;
panel (c): kx = π; panel (d): ky = 0; panel (e): ky = π; panel
(f): kz = π. The Z2 invariant is well defined on all except the
kz = 0 plane, and is non-trivial only on ky = 0 plane.

five planes as calculated directly from first-principles cal-
culations [17]. All but the ky = 0 planes are Z2 trivial, so
that the quantum spin Hall effect appears only in the xz-
plane, guaranteeing that non-trivial surface states exist
and cross the kx axis on the (001) surface in accord with
the surface state calculation illustrated in Fig. 6 below.

VI. TOPOLOGICAL CHARGE OF WEYL
POINTS

Using the crystal symmetry C2v, we only need to cal-
culate the topological charge of the Weyl points within
one-fourth of the entire Brillouin zone. The topologi-
cal charge (CS) of a Weyl point can be defined as the
net flux of the Berry gauge field penetrating a 2D sur-
face [7, 22, 23]

CS =
1

2π

∮
S

[∇k ×A(k)] · dS (3)

where the integrand A(k) = −i〈uk|∇k|uk〉 is the Berry
connection for the Bloch states |uk〉 calculated on the
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FIG. 5. (a) A sphere surrounding one of the W points is
shown schematically. (b) Loops linking with the nodal line
formed by bands N − 1 and N are shown. (c) Topological
charge for the point W . (d) topological charge of one of the
Weyl points formed by bands N + 1 and N + 2, obtained by
integrating the Berry curvature of N+1 bands. (e) The Berry
phase acquired by Bloch states when going around a gapped
loop linking with the nodal ring. For all loops this phase is
equal to π, as expected.

surface S that encloses the Weyl node. By Stokes theo-
rem, the CS defined above should be equal the topological
charge of the Weyl point.

For this reason, the closed Fermi surface of the type-I
Weyl point has nonzero topological charge. In the case
of a type-II Weyl point, however, the Fermi surface is
open, and hence cannot be used to compute the topolog-
ical charge of the Weyl point. Instead, we integrate the
Berry curvature computed for N lowest bands, where N
is the number of electrons per unit cell. A closed surface,
on which the lowest N states are separated by an energy
gap from the other higher energy states, and which en-
closes the type-II Weyl, can easily be found. This surface
defines a 2D manifold in 3D momentum space, formed by
the lowest N states, and unlike any possible Fermi sur-
face, it corresponds to different energy values for different
momenta k in the Brillouin zone.

Using both, first-principles calculations and Wannier-
based tight-binding models [15, 16], Bloch states were
calculated on spheres enclosing Weyl points. One of such
spheres enclosing the point W of the main text is shown
as a circle S in the kz = 0 plane of the Brillouin zone in
Fig. 5(a). For the calculation of the topological charge
of Weyl points formed by bands N + 1 and N + 2 the
Berry curvature is computed for N + 1 bands and the
integration surface is chosen such that an energy gap be-
tween N + 1 and N + 2 bands is present everywhere on
it. For further illustration of the topological charge, fol-
lowing the work of Ref. [7] in Fig. 5(c-d) we plot the
total electronic polarization [24] for one-dimensional cir-
cular cuts of the sphere S taken for different values of
the polar angle θ for the Weyl points W and one of the
points formed between bands N +1 and N +2 located at
(0.1004, 0.040, 0.0). The shift of polarization value when
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going from θ = 0 to θ = π gives the Chern number (chi-
rality) of the Weyl point.

To prove the existence of the line nodes formed by
bands N − 1 and N , we calculated the Berry phase ac-
quired by N−1 bands along a loop in k-space linked with
one of the nodal lines, as shown if Fig. 5(b). On each of
such loops a gap between bands N and N − 1 exists, so
that the Berry phase for the manifold of N − 1 bands is
a well-defined quantity. In the presence of a monopole
inside the loop, this Berry phase has to be equal to π.
As illustrated in Fig. 5(c), all loops have π Berry phase
thus proving the existence of the line node (that is, a
monopole exists within every loop).

Pierced by a line on which the bands N − 1 and N are
degenerate, while being gapped on the loop and due to
the presence of the mirror plane this Berry phase is equal
to π as illustrated for a set of loops in Fig. 5(e).

A. Weyls and Nodal Lines formed by bands other
than N and N + 1

We found a plethora of topological features formed
by bands N + 1 and N + 2, including line nodes on
the mirror planes and several sets of Weyl points. Of
these the ones found at k1 = (0.1004, 0.040, 0.0), k2 =
(0.11307861, 0.06131836, 0), k3 = (0.1603, 0.0750, 0), and
k4 = (0.1196, 0.1068, 0.2508) (and their mirror images)
are of the most relevant located only 60, 57, 73 and
66 meV above the Fermi level. Hidden inside the car-
rier pockets these additional Weyl points and their as-
sociated Fermi arcs overlap with the bulk states when
projectod onto the experimentally relevant (001)-surface.
The nodal lines present on the kx = 0 and ky = 0 planes
(including the one formed by bands N − 1 and N) also
do not contribute visible spectroscopic signatures to this
surface – their associated drum-head surface states [25]
are projected onto the surfaces other than (001).

VII. FERMI ARCS AND SURFACE STATES

Implementing the Green’s function method of Ref. [26]
to the Wannier-based tight-binding Hamiltonian gener-
alted from the first-principles calculation, we obtained
the surface states for the (001)-surface. They are plotted
in Fig. 6, together with the corresponding surface Fermi
surfaces. As discussed above, the Weyl points formed by
bands N and N + 1 are responsible for the presence of
visible surface states in the bulk gapped region. In accord
with the discussion above, the surface states connecting
valence and conduction states along the kx direction are
clearly seen in the spectral function of the (001)-surface
of Fig. 6(a-b).

The connectivity patterns of the corresponding Fermi
arcs for the (001)-surface at different energies are shown
in Fig. 6(c). Since MoTe2 is a type-II Weyl semimetal,
the Fermi arcs are always accompanied by the projections

of bulk electron and hole pockets. This makes it possible
to tune the Fermi arcs by changing the position of the
chemical potential, and Fig. 6(c) illustrates the evolution
of the Fermi arc states for different values of the chemical
potential. The states are clearly visible when this value
is set to −20 meV below the Fermi level.

Unlike the case of type-I Weyl semimetals, where the
Fermi arc necessarily connects the projections of the
Weyl points onto the Fermi surface, here it arises out
of the generic point in the electron pocket and dives
back into it, as illustrated in the main text. This arc,
however is still topologically non-trivial, as illustrated in
Fig. 7. At small values of |ky| < 0.0503 in between the
two W points the 2D (kx, kz) cut of the Brillouin zone ex-
hibits the quantum spin Hall effect, and the correspond-
ing topological surface state is clearly visible connecting
the valence and conduction bands across the gap (see
Fig. 6(a-b)). At the position of W points, that is for
ky = ±0.0503 the corresponding 2D cut of the Brillouin
zone is metallic but a surface state is still seen below the
Weyl point at the boundary of the bulk valence bands
projection (Fig. 7(a-b)), but it now reconnects from the
valence to conduction states. At |ky| > 0.0503 the 2D
cuts of the Brillouin zone become topologically trivial
and a topologically trivial surface state is clearly seen
in Fig. 7(c-d). Thus, the Fermi arc of the main text is
formed by a topological surface state, resulting from the
quantum spin Hall effect at small ky, and the topolog-
ically trivial state at larger |ky| serves to connect this
in-gap state to the projections of the bulk Fermi pockets.

VIII. STRAINS

As mentioned in the main text, the band structure of
MoTe2 around the Fermi level is very sensitive to changes
in the lattice constant. To illustrate this we studied
topological phase transitions occurring between the va-
lence and conduction bands in this material under vari-
ous strain values (see Supplementary Information). We
find that for these bands two additional sets of WPs can
appear in MoTe2 with small changes in the lattice con-
stants. The first set consists of 4 type-II WPs in the
kz = 0 plane arising in pairs of opposite chirality from
the mirror plane ky = 0 and giving 8 total WPs in anal-
ogy with WTe2 [7]. This scenario is realized under a
hydrostatic strain of [27] +0.3% and uniaxial strains of
+2% and −0.3% in z and y correspondingly. Another set
of additional WPs consists of type-II nodes appearing off
the kz = 0 plane for a hydrostatic strain of −0.25% and
for uniaxial strains of −0.2% and +2% in z and y cor-
respondingly. Finally, both sets appear for a uniaxial
strain in the x direction of 0.5% (only 0.1% strain is re-
quired to generate the additional set at kz = 0), while
for negative strains in x no new WPs are generated be-
tween bands N and N +1, but the W points move closer
to each other [28]. The strong dependence of the Weyl
physics on the applied strain has also been pointed out
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FIG. 6. Surface dispersions and Fermi surfaces. (a): (001)-surface dispersion in the kx direction. (b): Zoom-in of panel (a),
showing in-gap topological surface states. (c): The surface Fermi surfaces and Fermi arcs for different values of the chemical
potential.

in [1]. For their structure, it was also found that strain
can induce a type-II to type-I Weyl transition [1]. The
calculation of strained structures has been performed as
follows. The aim of this study was to look at the stabil-
ity of different topological phases under small changes in
the lattice parameters. Here the strained structures were
calculated from first-principles by changing the lattice
constants only, without further relaxation. To find the
critical values of strains at which the topological phase
transitions occur, ab initio calculations were performed
for a large number of strained structures and the closing
of the band gap at the Weyl nodes was observed. The
full analysis including the calculation of topological in-
variants, however, was done only for specific strain values
to confirm the qualitative nature of the phase transitions.
The approximate values of critical strains were extracted
from these calculations.

The details on the calculation of strained structures are
as follows. The aim of this study was to look at the stabil-

ity of different topological phases under small changes in
the lattice parameters. Here the strained structures were
calculated from first-principles by changing the lattice
constants only, without further relaxation. To find the
critical values of strains at which the topological phase
transitions occur, ab initio calculations were performed
for a large number of strained structures and the closing
of the band gap at the Weyl nodes was observed. The
full analysis including the calculation of topological in-
variants, however, was done only for specific strain values
to confirm the qualitative nature of the phase transitions.
The approximate values of critical strains were extracted
from these calculations.

IX. ADDITIONAL REMARKS

VESTA [29], Gnuplot [30], Mayavi [31], Mat-
plotlib [32], GIMP [33] and Inkscape [34] software pack-
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FIG. 7. Surface dispersions in the kx direction with different ky-values. (a): (001)-surface dispersion in the kx direction with
ky = 0.0503. (b): Zoom-in of panel (a), showing a gap closure at the W Weyl point. (c): (001)-surface dispersion in the kx
direction with ky = 0.07. (d): Zoom-in of panel (c), showing a trivial surface state.

ages were used to prepare some of the illustrations.
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