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Abstract

Geometric properties of electron states in crystalline solids lead to a topological
classification of materials. A remarkable consequence of this topological viewpoint
is that it reveals a deep link between the bulk properties of a material and elec-
tronic states which form on its surface. This leads to unique transport properties,
the most well-known example being the integer quantum Hall effect. In topo-
logical semimetals, the bulk features of interest are nodes in the band structure,
where occupied and unoccupied states are not separated by an energy gap. This
leads to interesting low-energy excitations, some of which are the condensed mat-
ter equivalent of fundamental particles. The Weyl Fermion for example is realized
in topological semimetals, which is theoretically postulated but eludes experimen-
tal verification in high-energy physics. Crystals however do not have a continuous
translational symmetry, and thus do not need to fulfill the so-called Lorentz invari-
ance present in high-energy physics. This allows for Fermions to exist in materials
which do not have a fundamental counterpart. The main topic of this thesis is
the study and identification of topological semimetals. We propose a mechanism
for Weyl Fermions to form under the influence of an external magnetic field. This
effect could help explain the anisotropic negative magnetoresistance in transition
metal dipnictides. We also study several novel topological material candidates,
hosting a plethora of Weyl Fermions and topological nodal lines. In addition to
studying specific material examples, we also present several tools and algorithms
which enhance the process of identifying topological materials. First, we present
an algorithm for evaluating the phase diagram of a system with discrete phases.
This is useful in identifying topological phases, but also applicable to other fields of
computational physics. Furthermore, we develop tools that simplify the creation
of k · p and tight-binding models to study crystalline systems. A particular focus
lies on the construction of models which preserve the crystal symmetries, since
these play a crucial role in determining the topology of a material. And finally, we
develop an algorithm that reliably finds and classifies topological nodal features.
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Zusammenfassung

Geometrische Eigenschaften der Elektronenzustände in Kristallen erlauben eine
topologische Klassifizierung der Materialien. Eine ausserordentliche Konsequenz
dieser topologischen Sichtweise ist, dass sie einen tiefen Zusammenhang zwischen
den Eigenschaften im Inneren eines Materials und Oberflächenzuständen der Elek-
tronen offenbart. Dies hat einzigartige Transporteigenschaften zur Folge, von denen
der ganzzahlige Quanten-Hall-Effekt das bekannteste Beispiel ist. In topologischen
Halbmetallen sind diejenigen Teile der Bandstruktur von besonderem Interesse, an
denen sich die besetzten und unbesetzten Zustände berühren, sie also nicht durch
eine Energielücke getrennt sind. Dies führt zu niederenergetischen Anregungen, von
denen einige das Äquivalent elementarer Teilchen in kondensierter Materie sind.
Das Weyl Fermion zum Beispiel existiert in topologischen Halbmetallen, während
es in der Hochenergiephysik zwar theoretisch postuliert aber nicht experimentell
nachgewiesen ist. Allerdings haben Kristalle keine kontinuierliche Translations-
symmetrie, weshalb die sogenannte Lorentz-Invarianz anders als in der Hochen-
ergiephysik nicht erhalten bleiben muss. Dies erlaubt in Materialien die Existenz
von Fermionen welche kein elementares Gegenstück haben. Das Hauptthema die-
ser Dissertation ist das Studium und Identifizieren topologischer Halbmetalle. Wir
präsentieren einen Mechanismus, wie sich Weyl Fermionen unter Einfluss eines ex-
ternen magnetischen Feldes bilden können. Dieser Effekt könnte dazu beitragen,
die anisotrope negative Magnetoresistivität von Übergangsmetall-Dipnictiden zu
erklären. Ausserdem untersuchen wir mehrere neuartige Materialkandidaten, die
eine Fülle von Weyl-Fermionen und topologischen Linienstrukturen beherbergen.
Neben der Untersuchung spezifischer Materialbeispiele präsentieren wir verschiede-
ne Werkzeuge und Algorithmen, die der Identifizierung topologischer Materialien
dienen. Zunächst stellen wir einen Algorithmus zur Berechnung von Phasendia-
grammen mit diskreten Phasen vor. Dies ist nützlich im Zusammenhang mit topo-
logischen Phasen, aber auch in anderen Teilgebieten der Computerphysik anwend-
bar. Des weiteren entwickeln wir Werkzeuge, welche das Erstellen von k · p - und
Tight-Binding-Modellen für Kristalle erleichtern. Speziell im Fokus sind Techni-
ken, durch welche die erstellten Modelle die Kristallsymmetrien erhalten. Diese sind
für die topologische Struktur der Materialien von zentraler Bedeutung. Schliess-
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lich entwickeln wir Algorithmus der zuverlässig die topologischen Merkmale von
Halbmetallen findet und klassifiziert.
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1
Introducধon

Crystalline states of matter – solids in which atoms form regular, repeating pat-
terns – are ubiquitous in almost any aspect of modern technology. Ferromagnetic
materials for example are essential in constructing electric motors, generators or
transformers. Semiconductors have powered the computational revolution of the
recent decades. Solid-state lasers, light-emitting diodes, solar cells, digital image
sensors, and many more technologies fundamentally rely on such crystalline solids.
Unsurprisingly, the study of such systems is a major field in condensed matter
physics. A particularly active topic is the study of electronic states, since these
give rise to many of the aforementioned technological applications. An important
factor when studying electrons in a solid is the strength of correlations between
individual electrons. When these interactions are strong, quantum effects can be-
come dominant, leading to phenomena such as superconductivity, charge density
waves, and Mott insulators to name just a few. A much simpler picture arises
when these interactions are weak enough to be ignored. In this case, each electron
can be described as being under the influence of an average periodic potential
created by the ionic cores and surrounding electrons. The whole system can then
be described as a set of independent wave-like states which are either occupied by
an electron or unoccupied, depending on their energy. Despite this simplification,
surprisingly complex phenomena can still be observed. This was first realized in
1980 by von Klitzing in the integer quantum Hall effect [10]. When applying a
strong magnetic field to a two-dimensional electron gas with high mobility, the
Hall conductivity forms striking plateaus. The values of these plateaus are integer
multiples of a universal constant, with a remarkably low error of less than 10−6

even in the early experiment. The reason for this effect is that the Landau levels
– electron states induced by the magnetic field – produce chiral edge states. Each
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occupied Landau level contributes one such edge state, and consequently an inte-
ger contribution to the Hall conductivity. Thouless et al. [11] realized that this
phase can be interpreted in the context of the mathematical theory of topology:
The Landau levels can be interpreted as a geometric object which has a nontrivial
topological shape. In 1988, Haldane [12] generalized this topological interpretation
to arbitrary electronic bands, opening up the possibility for a realization of the
quantum Hall effect even in the absence of a magnetic field. These developments
form the starting point for the field of topological matter, which studies electronic
states from the viewpoint of their topological structure. A common feature of
topologically nontrivial phases is that they have a deep connection between this
geometric shape of electronic bands in the bulk of the material and conducting
edge states.

Another fascinating property of crystalline systems is that they form low-energy
excitations which are mathematically similar to actual or hypothetical elementary
particles. A well-known example is produced when an electron is missing from its
usual position, leaving behind a hole of positive charge. These so-called quasipar-
ticles appear as emergent phenomena of the collective behavior of electrons. In
many cases, describing the physical properties of solids is more intuitive in this
quasiparticle picture. For example, both electrons and holes appear to have a cer-
tain effective mass which is different from the intrinsic electron mass. Of course
the electrons do not actually acquire or lose mass, but describing an electron of
a different mass is mathematically more elegant than modeling the complex in-
teractions between electrons and nuclei. In topological semimetals, this notion
of low-energy excitations forming quasiparticles is joined with the description of
electronic states from the viewpoint of topology. They host quasiparticles which
are not only the condensed-matter equivalent of fundamental particles, but also
form – and are protected by – a nontrivial topological phase.

The topics covered in this thesis fall into one of two categories: First, the study
of specific materials and topological semimetal phases. And second, the creation of
techniques, algorithms and tools for simplifying and enhancing this study of topo-
logical semimetals. The thesis is structured as follows: In chapter 2, we give a brief
description of band theory, which is the general physical context in which topologi-
cal phases are subsequently described. We discuss numerical approaches to solving
this problem, namely density functional theory, tight-binding models, and the k ·p
approximation. In chapter 3, we dive into the topological aspects of band theory.
We motivate the topological nature of electronic bands from its mathematical ori-
gin, and describe how a topological invariant called the Chern number can be used
as a basis for identifying topological phases. Concluding the introductory part of
this thesis, chapter 4 describes topological states in the context of semimetals. As
an example of such a topological semimetal state, we describe the Weyl phase. We
also review recent advances in classifying topological semimetal phases, focusing
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Introduction

mainly on our discovery of the type-II Weyl phase. Departing slightly from the
main topic of the thesis, in chapter 5 we introduce an algorithm for computing dis-
crete phase diagrams. We show how this algorithm can reduce the number of phase
evaluations required by focusing on the phase boundaries, and describe its conver-
gence properties. Returning to the topic of topological semimetals, in chapter 6
we show how an external magnetic field can produce Weyl nodes in a previously
topologically trivial materials. In particular, we study a k · p model of TaAs2 and
a tight-binding model of NbSb2. By employing the algorithm introduced in chap-
ter 5, we compute phase diagrams for the number of Weyl nodes as a function of
applied magnetic field. Chapters 7 and 8 introduce techniques for simplifying the
study of topological materials, as well as the band structure problem in general.
In chapter 7, we present a method for automatically generating the general form
of a k · p model in the presence of symmetry. By reformulating this problem in
the language of linear algebra, we enable solving it with the help of a computer
algebra system. The tight-binding approach to solving the electronic structure
problem is the topic of chapter 8. We present automated workflows for generating
tight-binding models from first-principles calculations. Building upon the tech-
nique of Wannier tight-binding models, we introduce a method for symmetrizing
these models based on performing a group average. Furthermore, we employ lo-
cal optimization to automatically choose energy input parameters required by the
Wannier tight-binding procedure. Finally, in chapter 9 we describe an algorithm
for automatically finding and identifying nodal features. Using this procedure, we
classify two known topological semimetal, as well as five novel candidate materials.
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2
A Short Introducধon to Band Theory

Parts of this chapter were previously published in ref. [8]
Band theory is an approximate way of describing the electronic states in regu-

lar, crystalline materials. The topological phenomena discussed in this thesis are
founded on this theory, and so we give a brief introduction to band theory in this
introductory chapter. This description is far from complete, focusing instead on
the parts which are required for the understanding of the topics covered in this
thesis. A more thorough description can be found in any solid state physics text-
book. In the first section of this chapter, we discuss the definition and symmetries
of crystalline systems. Next, we show how the electronic states are defined in the
context of weak interactions. And finally, we describe the numerical methods used
throughout this thesis to obtain a description of these electronic states.

2.1 Periodic Laষces
Atoms in solids often arrange themselves in regular, repeating patterns, forming
what is known as a crystal structure. The unit of periodicity in such materials is
a parallelepiped spanned by vectors {a1, a2, a3}, the unit cell. Within each unit
cell, the relative positions of atoms are the same. While the choice of unit cell is
not unique, there is a unique minimum volume that a unit cell must have. Such
a unit cell with minimal volume is called a reduced unit cell. A perfect, infinite
crystal is symmetric under any translation by a lattice vector R defined as

R = n1a1 + n2a2 + n3a3, (2.1)

where ni are integers. Due to this symmetry, the Hamiltonian H describing the
crystalline system and all translation operators T̂R commute and are simultane-
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2.2 Bloch States

ously diagonalizable. In this diagonal basis, the eigenstates of the translation
operators are given by

T̂R |ψk⟩ = e−ik.R |ψk⟩ , (2.2)

where k is a vector of quantum numbers. The physical interpretation of k is as a
crystal wave-vector. It is unique only up to translations in the so-called reciprocal
lattice that is spanned by {b1,b2,b3}, which are defined by

ai.bj = 2πδi,j. (2.3)

In addition to the purely translational symmetries, crystal structures can have
further symmetries such as rotations, reflections, screw axes or glide planes. These
symmetries can be written in the form

g = {S|t}, (2.4)

where S is a matrix operation (rotation, reflection or rotoreflection), and t is a
translation vector. Using this notation, the symmetry acts on a general position r
as

gr = Sr + t. (2.5)

Based on their symmetry group, three-dimensional crystal structures are classified
into one of 230 space groups. If the symmetry group of a material (excluding pure
translations) can be expressed using only the matrix S for any choice of origin,
it is called a symmorphic group. If on the other hand some symmetries always
contain a non-zero translation vector, as is the case for screw axes or glide planes,
it is called non-symmorphic. The symmetries present in a crystal greatly influence
its physical properties, as we shall see throughout this thesis.

Of course, we have considered an idealized crystal structure so far. In real
materials, the presence of defects in the crystal structure can influence their phys-
ical properties. Another such effect comes from the finite size of samples. Since
the typical side length of a unit cell is a few Ångström, this is however usually
negligible in macroscopic samples.

2.2 Bloch States
In general, the physics of solids is determined by the movement of both nuclei and
electrons, as well as their interactions. However, nuclei are orders of magnitude
heavier than electrons. When treating the electronic configuration, we can thus
use the Born-Oppenheimer approximation, which assumes the nuclei to stay fixed.
Instead of considering the full n-electron problem, we make another approximation
to consider the electron-electron interaction as an average potential acting on a
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A Short Introduction to Band Theory

single particle. Surprisingly, this mean field approximation of electronic states still
gives a reasonable description for many systems. This approximation however can
not describe effects which arise from strongly correlated electrons.

In this non-interacting limit, electronic states in crystalline materials can be
described by a single-particle Hamiltonian H(k), which is a smooth function of the
crystal wave-vector k. The possible electronic states are given by the solutions of
the time-independent Schrödinger equation

H(k) |ψn,k⟩ = ϵn,k |ψn,k⟩ . (2.6)

These so-called Bloch states |ψn,k⟩ are a superposition of plane waves with wave-
vector k. As such, they can be written as

|ψn,k⟩ = eik·r |un,k⟩ , (2.7)

where |un,k⟩ is cell-periodic. This property is known as the Bloch theorem [13].
The energy eigenvalues ϵn,k are called energy bands, with n being their band index.

The bulk properties of materials are determined largely by their band struc-
ture. For example, a material is insulating if there is an energy gap between the
eigenstates which are occupied by electrons, and those that are empty, as shown
in fig. 2.1(a). Conversely, a material is conducting if there is no such energy gap,
such as when an energy band is only occupied for certain values of k as shown in
fig. 2.1(b)

As we shall see in the next chapter, the band structure does not completely
capture the physics of a given material. Instead, taking into account the shape of
the Bloch states |ψn,k⟩ leads to a topological classification of materials. A common
feature of such topological phases is that they exhibit surface states, which are
protected in such a way that they cannot be removed by small perturbations.

2.3 Numerical Methods
Before diving into the topological properties of band structures, we discuss some
common numerical methods used to treat the electronic structure problem. First,
we discuss density functional theory, a method for calculating the electronic struc-
ture directly from the atomic configuration. We then discuss two methods for
constructing a simplified effective model, the tight-binding and k · p methods.

2.3.1 Density Funcধonal Theory
Density functional theory (DFT) [14, 15] is the most commonly used technique
for calculating the electronic structure of real materials in the weakly interacting
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2.3 Numerical Methods

(b)(a)

ε

k

ε

k

Figure 2.1: Band structures along a one-dimensional line in k-space. (a) Band
structure of an insulating material. Occupied (blue) and unoccupied (orange)
states are separated by an energy gap for all k. (b) Band structure of a conducting
material. Occupied and unoccupied states touch, and some bands are partially
occupied.

limit. It is based on theorems by Hohenberg and Kohn [14], which state that a
universal density functional F [ρ] exists such that for any external potential Vext,
the energy functional

E[ρ] = F [ρ] +

∫
Vext(r)ρ(r) d3r (2.8)

is minimized exactly when ρ is the ground state density ρ0. The minimum energy
E0 = E[ρ0] is the ground state energy.

While this description in principle gives a simple way of solving the electronic
structure problem by minimizing a functional, the fundamental problem of DFT
is that the functional F [ρ] is not known. A common ansatz [15] used to tackle this
problem is to explicitly write the contributions to F from kinetic energy T and
Coulomb repulsion, and define an “exchange correlation” term Exc to contain the
missing terms:

F [ρ] = T [ρ] +
e2

2

∫∫
ρ(r)ρ(r′)
|r − r′| d3r d3r′ + Exc[ρ]. (2.9)

This approach obviously just shifts the problem to finding an exact form of Exc.
Different approximate methods such as the local density approximation (LDA) [14],
generalized gradient approximation (GGA) [15, 16], and methods including a
Hartree-Fock term [17–20] have been developed to treat this issue. The advan-
tage of the formulation in terms of eq. (2.9) is that it can be interpreted as a
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A Short Introduction to Band Theory

single-particle density in an effective potential [15]

Veff(r) = Vext + e2
∫

ρ(r′)
|r − r′| d3r′ + δExc[ρ]

δρ(r) . (2.10)

For a given Veff, the single-particle wave function can be obtained by solving the
Schrödinger equation (

−1

2
∇2 + Veff(r)

)
ψi(r) = εiψi(r), (2.11)

from which the density can be obtained via

ρ(r) =
∑
i

|ψi(r)|2, (2.12)

where the sum goes only over occupied states. Since the density itself is also part
of the effective potential, these equations need to be solved in a self-consistent way.
This can be done by choosing an initial density ρ and then iteratively updating
it using eqs. (2.10) to (2.12) until it converges. This is known as the Kohn-Sham
scheme [15].

Using DFT, it is possible to solve the electronic structure problem from first
principles, requiring only the atomic configuration as input. However, the com-
putational cost of this approach is large, since all electronic states need to be
calculated. Instead, one can use so-called pseudopotentials, which describe the
effect of an atomic nucleus and its core electrons. While this reduces the compu-
tational cost, the construction of effective pseudopotentials which are transferable
(applicable for many different materials) is not an easy task. Often, experimental
data is used to improve the accuracy of pseudopotentials. Thanks to various efforts
however [21–29], nowadays high-quality pseudopotentials are readily available.

Throughout this thesis, we use DFT as a tool to obtain the electronic structure
of real materials, using well-established codes [30–34].

2.3.2 Tight-Binding Models
Tight-binding models provide an intuitive, real-space description of crystalline ma-
terials. They consist of localized orbitals {|ϕ1,R⟩ , ..., |ϕN,R⟩}, centered at positions
t1, ..., tN inside the unit cell given by the lattice vector R. The movement of
electrons between these orbitals is described by so-called “hopping terms”. For a
tight-binding model with Hamiltonian H, the transition probability from |ϕj,R⟩ to
|ϕi,R′⟩ is given by

⟨ϕi,R′ |H |ϕj,R⟩ = ⟨ϕi,0|H |ϕj,R−R′⟩ = H ij[R − R′]. (2.13)
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2.3 Numerical Methods

This relation defines the real-space Hamiltonian matrix H[R]. The matrix element
Hi,i[0] describes the so-called on-site energy of the orbital |ϕi⟩. If we define an
extended Bloch-like basis as1

|ψi,k⟩ =
1√
N

∑
R
eik.(R+ti) |ϕi,R⟩ , (2.14)

where N is the number of lattice sites2, we can write the k-space Hamiltonian
matrix as

Hij(k) = ⟨ψi,k|H |ψj,k⟩ =
1

N

∑
R,R′

e−ik.(R′+ti) ⟨ϕi,R′ |H |ϕj,R⟩ eik.(R+tj) (2.15)

=
1

N

∑
R,R′

eik.(R−R′+tj−ti)H ij[R − R′] =
∑

R
eik.(R+tj−ti)H ij[R],

where we replaced R − R′ with R in the last step. The tight-binding description
can be interpreted as an approximation of the k-space Hamiltonian using Fourier
coefficients. Including longer-range hopping terms increases the accuracy of this
approximation, as does the inclusion of more (possibly unoccupied) orbitals.

In contrast to DFT, tight-binding is not a first-principles method. As such,
the hopping parameters need to be obtained from a different method. This can
be either a theoretical consideration, creating a toy model, or a first-principles
calculation to describe realistic materials. The latter is the subject of chapter 8.

2.3.3 k · p Models
Finally, another way of approximating the k - space Hamiltonian is the so-called
k · p [37] method. Whereas the tight-binding method approximates H(k) with a
Fourier expansion, the k · p method does so using a Taylor series around a chosen
point k0. The k · p model up to n-th order can be written as

H(k) =
∑

α,β,γ∈N0
α+β+γ≤n

Hαβγ (k∗x)
α (k∗y)β (k∗z)γ , (2.16)

where k∗ = k − k0 is the relative k - vector. A notable consequence of this
approximation is that the model is no longer periodic in reciprocal space.3 Since

1In ref. [35], this is defined as convention I. Unless otherwise specified, this is the convention
we use throughout this thesis. Convention II does not explicitly take into account t, and is
more efficient for computing the energy eigenvalues. As such, it is used as a default in our
TBmodels [36] code.

2For simplicity we assume the system to be finite here. This allows for creating a normalized
Bloch-like basis.

3The model can be made periodic, but only at the cost of introducing a discontinuity.
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k · p models are computationally very cheap, they are often used when only the
behavior in the vicinity of k0 is important. In chapter 7, we show how k ·p models
can be constructed in such a way that they respect the crystal symmetries.
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3
Topological Properধes of Electronic
Bands

Parts of this chapter were previously published in ref. [8]
In the previous chapter, we have identified the band structure as a funda-

mental tool for determining the properties of weakly interacting materials. Here,
we extend upon this view by taking into account the shape of the Bloch states
themselves. In particular, this gives rise to a topological classification of materials.
The defining feature of such topological phases is that their Bloch states cannot
be smoothly transformed into each other. We start by motivating and defining
this notion of topological phases. Next, we give an example of such a phase and
show how it can be identified numerically. Finally, we show how topological clas-
sification can be enriched in the presence of symmetries, using the example of
time-reversal symmetry.

3.1 Topology in Non-interacধng Materials
In this first section, we will introduce the notion of topological properties in the
context of non-interacting materials. From their basic definition, we will see that
topological phases must exhibit some interesting physical phenomena.

3.1.1 Topological Properধes
To motivate the concept of topological classification, we first show an example from
its mathematical origins in geometry: Closed, orientable two-dimensional surfaces
can be classified by their number of holes, called genus. A sphere for example has

13



3.1 Topology in Non-interacting Materials

(b)(a)

Figure 3.1: Examples of closed orientable surfaces: (a) A sphere has no holes (b)
A torus has one hole

no holes, while a torus has exactly one (see Fig. 3.1). This property is conserved
under smooth deformations of the surface. The only way to add or remove a hole
is by tearing and gluing the surface. The genus is an example for a topological
invariant – a quantized property that cannot be changed without changing the
topological phase. For this reason, topological invariants are commonly used to
identify topological phases.

In order to define topological phases for materials, we need a geometric object
on which the topological properties can be defined. For this purpose, we pick a
set of bands B. A very common choice for B is to pick the occupied subspace1.
The set of states {|un,k⟩}n∈B span a vector space Vk (over C) for each k. If Vk is
a smooth function of k and the space where k itself is defined is a manifold, this
defines a so-called fiber bundle.

A simple geometrical example of a fiber bundle is given by a one-dimensional
vector space defined on a circle. If the vector space is orthogonal to the plane
described by the circle, the resulting object is a cylinder, as shown in Figure 3.2 (a).
If however the basis vector rotates by π as it goes around the circle, the resulting
object is a Möbius strip. These two objects cannot be smoothly transformed into
each other, making them topologically distinct.

3.1.2 Bulk-edge Correspondence
In the previous section, the fact that the vector space Vk needs to be a smooth
function of k was mentioned. This has a profound impact on the physical properties

1This is not always possible, as in the case of semimetals where the occupation number changes
with k. In these cases, one often picks the N lowest energy bands instead.

14



Topological Properties of Electronic Bands

(b)(a)

Figure 3.2: (a) A cylinder, spanned by a vector which does not rotate as it goes
around a circle. (b) A Möbius strip, spanned by a vector which rotates by π as it
goes around a circle.

of topological states, as we shall now see.
Even though the Hamiltonian H(k) is a smooth function of k, the same is not

necessarily true for Vk. Consider the following one-dimensional example:

H(k) = − cos(k) |a⟩⟨a|+ cos(k) |b⟩⟨b| , (3.1)

where |a⟩ and |b⟩ are two arbitrary orthogonal states. For k = 0, the energy
eigenvalues of |a⟩ and |b⟩ are −1 and 1, respectively. Consequently, |a⟩ has band
index 1 while |b⟩ has index 2. As k changes, the energy eigenvalues shift until they
are equal at k = π/2. At this point, the vector space Vk = span

(
{|un,k⟩}n∈{1}

)
switches discretely from being spanned by |a⟩ to being spanned by |b⟩. As a result,
this space does not meet the criteria for topological categorization.

The smoothness of the vector space Vk can be broken if the order of energy
eigenvalues between the states which are in the set B and those which are not
changes. This can easily be avoided if we restrict our possible choice of bands B,
such that they are always separated from the other bands by a direct energy gap.
In other words, topological properties are defined for isolated sets of bands, which
form smooth fiber bundles.

Another way to frame this is by looking at the possible transformations that
can be done to a material without changing its topological properties. In addi-
tion to requiring that these transformations smoothly change the Hamiltonian, we
impose that the band gap remains open. This definition leads to a remarkable
physical property of topological phases: At the boundaries of topologically non-
trivial insulating materials, stable conducting edge states must form. In going from
the bulk of the topological material to vacuum, the system undergoes a smooth
transition from a non-trivial to a trivial (vacuum) state. To allow for this, the
aforementioned condition that the bands are separated in energy must be broken.
This effect is known as the bulk-boundary correspondence, and variations of this
effect govern the interesting transport phenomena to be found in many topological
materials [12, 38, 39].
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3.2 The Chern Number

(b)(a)
Vk k

C

Figure 3.3: (a) A closed path C on the surface of a sphere. (b) The tangential
vector space Vk for a given point k on a sphere.

3.2 The Chern Number
In the previous section, we have seen how topological properties in crystalline
materials are defined on a conceptual level. Now, we will show an example for
a topological invariant, which can be used to classify many topological phases of
matter.

3.2.1 The Berry Phase and Chern Invariant
The basis for defining a topological invariant for electronic bands is the notion of
a geometric phase. To illustrate this phase, imagine a closed loop C on a manifold.
As an example, we choose a closed loop on a sphere, as shown in Figure 3.3(a).
Adding the plane tangential to the sphere at each point gives us a fiber bundle
(see Fig. 3.3(b)).

Now we choose a vector in the tangential space, and move it along C in such a
way that it remains locally parallel to itself, as shown in Figure 3.4. This process
is called parallel transport. We observe that the vector is rotated by some angle ϕ
as it traverses the path C. Since this angle depends only on the geometry of the
fiber bundle, it is called a geometric phase.

For electronic bands, such a phase, known as Berry’s phase 2, can be written
as [40]

γC = i

∮
C

∑
n∈B

⟨un,k|∇k |un,k⟩ .dk, (3.2)

2For simplicity, we consider the total Berry phase of all bands. The Berry phase can also be
defined for a single band, in which case the sum over bands is dropped.
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ϕ

Figure 3.4: Parallel transport of a vector on a closed path on a sphere rotates the
vector by an angle ϕ.

where C is a closed loop in reciprocal space. Unlike the example above, the Berry’s
phase represents a rotation in the complex phase of a vector, not its real-space
direction.3 It is gauge-invariant up to multiples of 2π [40]. By defining the Berry
potential (or Berry connection)

A(k) = i
∑
n∈B

⟨un,k|∇k |un,k⟩ , (3.3)

the Berry phase can be re-written as

γC =

∮
C
A(k).dk. (3.4)

Note that unlike the Berry phase, the Berry potential is not a gauge-invariant
quantity. If the Berry potential is a smooth function of k (an important prerequi-
site, as we shall see soon), we can use Stokes’ theorem to rewrite the Berry phase
as a surface integral

γC =

∫
S

∇k ∧ A(k).dk, (3.5)

where C = ∂S. Introducing the Berry curvature

F = ∇k ∧ A(k), (3.6)

which is again gauge-invariant, we can write this as

γC =

∫
S

F(k).dS. (3.7)

3To see this, try calculating the Berry phase for |uk⟩ = eik/2
(

cos(k)
sin(k)

)
, for k ∈ [0, 2π].
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For a closed, orientable two-dimensional surface S in reciprocal space, we can
now define the Chern invariant as [41, 11]

C =
1

2π

∫
S

F(k).dS. (3.8)

Since the edge of a closed surface is a trivial path, equation 3.4 seems to suggest
that the Chern number is always zero. We must now remember however that
equations 3.5 and 3.7 are valid only if the Berry potential A(k) is smooth. Previ-
ously, we discussed that Vk spanned by |un,k⟩ must be a smooth function of k if we
wish to define a topological classification. However, there can still be a winding
in the phase of |un,k⟩ which makes the Berry potential non-smooth. As a result,
the Chern number can take any integer value. In fact, the presence of a non-zero
Chern number can be viewed as a topological obstruction to finding a globally
smooth gauge [42, 43].

3.2.2 The Chern Number as Change in Berry Phase
Having defined the Chern number in terms of the cell-periodic states |un,k⟩, we
will now show an alternative form that is easier to calculate numerically and is
used within the Z2Pack code [6]. For simplicity, we will look at the example
where S is the Brillouin zone k ∈ [0, 1)2 of a two-dimensional material, in reduced
coordinates4. The results are equally applicable to other closed two-dimensional
surfaces.

We divide the surface integral (eq. 3.8) for the Chern number into small seg-
ments Si, as shown in Fig. 3.5(a). The segments should be small enough that

Ci
part. =

1

2π

∫
Si

F(k).dS (3.9)

is much smaller than one. The Chern number is then given as the sum of all
segment integrals,

C =
∑
i

Ci
part. (3.10)

Since A(k) can be made to be locally smooth [44, 45], we can use Stokes’ theorem
to obtain

Ci
part. mod 1 =

1

2π

∫
∂Si

A(k).dk mod 1 =
γ∂Si

2π
mod 1, (3.11)

4Reduced coordinates refer to coordinates in the (real- or reciprocal-space) lattice basis, as
opposed to cartesian coordinates.
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(b)(a)

ky

kx
0
0

1

1

S

pi pi+1

ky

kx
0
0

1

1

S

Si

Figure 3.5: (a) The surface S is divided into segments Si. For each segment,
the flux of Berry connection can be calculated from the Berry phase around its
boundary. (b) The top and bottom paths of each boundary cancel, leaving paths
pi which cross the Brillouin zone at a constant kx.

where the modulus comes from the fact that the Berry phase is defined only modulo
2π. Since we imposed that Ci

part. must be much smaller than one, we can still
uniquely determine its value from γ∂Si/2π by adding an integer that minimizes
the absolute value. Since the top and bottom parts of ∂Si cancel out due to
periodicity, we can write the Berry phase as

γ∂Si = γpi+1 − γpi , (3.12)

where pi and pi+1 are the paths at either side of the segment Si, as shown in
Fig. 3.5(b). The Berry phase can also be understood as a function of kx, since
each path pi is given by a fixed kx. Because both γ and kx are periodic, the Berry
phase describes a line on a torus, as shown in Fig. 3.6. The winding number of
this line around the torus is exactly the Chern number [46]. In other words, the
Chern number can be calculated by continuously tracking the Berry phase on lines
of constant kx as it goes across the Brillouin zone.

3.2.3 Wilson Loop and Hybrid Wannier Charge Centers
The problem of calculating the Chern number is now reduced to calculating the
Berry phase for closed loops in the Brillouin zone. This can be done by calculating
the so-called Wilson loop [47] W (C). The Wilson loop can be understood as a
matrix that maps the states at a starting point k0 along the loop onto their images
after parallel transport along C. For a discretization {k0, ...,kn−1,kn = k0} of the
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(b)(a)

γ

kx
0
0

2π

1

Figure 3.6: (a) The Berry phase γ as a function kx for an example system with
C = 1. (b) Because both kx and γ are periodic, the Chern number can be seen as
the winding number of the Berry phase around a torus.

path C, the Wilson loop can be approximated as [47][6]

W (C) =Mk0,k1 · ... ·Mkn−1,kn , (3.13)

where
Mki,kj

m,n =
⟨
um,ki

|un,kj

⟩
(3.14)

are the overlap matrices between Bloch functions at different k. The eigenvalues
λi of the Wilson loop are connected to the total Berry phase by [48]

γC =
∑
i

argλi. (3.15)

This reflects the fact that each λi is the rotation angle that is acquired by an
eigenstate of the Wilson loop as it traverses the path C. Since the overlap matrices
M can be readily computed, this gives a method for calculating the Chern number
numerically. Of course, the convergence of the Wilson loop eigenvalues with respect
to the discretization of C needs to be accounted for.

Another, equivalent, approach to calculating the Berry phase is by computing
so-called hybrid Wannier charge centers [49, 50]. This method is based on the
notion of Wannier orbitals, which are given by Fourier transforming the Bloch
states:

|Rn⟩ = V

(2π)d

∫
BZ

e−ik.R |ψn,k⟩ dk, (3.16)

where d is the dimensionality of the system, and V is the unit cell volume. The
resulting orbitals are localized, in contrast to the extended nature of the Bloch
waves. Since the Bloch states used to construct Wannier orbitals can be changed by
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a gauge transformation, the same holds for the Wannier orbitals. Their properties,
in particular the localization and position in real space, depend sensitively on this
choice of gauge [51]. For the purposes of computing topological invariants, we
introduce hybrid Wannier orbitals [49, 52], which are Fourier transformed only in
one spatial direction and remain extended in the others:

|Rx, ky, kz;n⟩ =
ax
2π

∫ π/ax

−π/ax

e−ikxRx |ψn,k⟩ . (3.17)

The average position of such an orbital can be thought of as a function of the
remaining reciprocal space variables:

x̄n(ky, kz) = ⟨0, ky, kz;n| x̂ |0, ky, kz;n⟩ . (3.18)

This quantity, known as the hybrid Wannier charge center (HWCC) is directly
related to the Berry phase:

γC =
2π

a

∑
n

x̄n, (3.19)

where C is the path along which the hybrid Wannier orbitals were Fourier trans-
formed. Moreover, if the gauge is chosen such that these hybrid Wannier orbitals
are maximally localized, the individual HWCC correspond to the eigenvalues of
the Wilson loop [6]

x̄i =
2π

a
arg(λi), (3.20)

up to possible reordering.
This equivalence between hybrid Wannier charge centers and the Berry phase

gives rise to a physical interpretation of the Chern number C. As the momentum
(kx, in the case of Fig. 3.6) is varied across the Brillouin zone, the average position
of the electrons in the orthogonal direction can change. Due to the periodicity of
kx, it must come back to the same position within the unit cell, but it can change
into a different unit cell. This represents a charge pumping process, where each
cycle of kx moves the charge by C unit cells.

3.3 Time-reversal Symmetry: Z2 Classificaধon
In the previous sections, we have seen how an isolated set of bands can be classi-
fied topologically according to their Chern number. Now, we will show how this
classification can be enriched in the presence of symmetries. In particular, we will
show that time-reversal invariant materials can be classified according to a Z2 in-
dex. After a theoretical introduction, we describe how the Z2 index is computed
numerically.
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3.3.1 Individual Chern numbers

In section 3.1.1, we have seen that topological phases can be defined on manifolds in
reciprocal space, if we choose a set of Bloch functions {|un,k⟩} such that they span
a smooth vector space Vk. The most convenient way of achieving this smoothness
is to choose an isolated set of bands, which is what we have used so far. This leads
to a classification into topological states which can only be adiabatically changed
by closing the band gap, and are characterized by the Chern number. However,
choosing isolated bands is by no means the only possible way to create a smooth
Vk. For the Hamiltonian of eq. 3.1 for example, we could just pick state |a⟩ for all
k.

Here, we aim to find a more complex topological classification by sub-dividing
the occupied states into smooth parts. In general, if the Hilbert space H of a given
problem can be written as a sum of smooth Hilbert spaces,

H =
⊕
i

Hi, (3.21)

then each of the Hilbert spaces has a well-defined Chern number Ci. These indi-
vidual Chern numbers [49] sum together to the Chern number of the full Hilbert
space:

C =
∑
i

Ci. (3.22)

However, in general these individual Chern numbers do not carry much meaning,
since the choice how to split up the Hilbert space is arbitrary. In the presence of a
symmetry S however, the Hilbert space can be split up according to the symmetry
eigenvalues. For example, consider a mirror symmetry with eigenvalues ±i. On the
mirror-symmetric surface, S and H(k) commute. Therefore, the Bloch functions
|un,k⟩ can be separated into +i and −i eigenstates. Both eigenspaces have a well-
defined Chern number:

C = Ci + C−i. (3.23)

This gives rise to a symmetry-protected [53–55] topological classification. Materials
can have a zero total Chern number, but non-zero individual Chern numbers. Such
a topological phase is protected as long as both the band gap remains open and the
symmetry is respected. If the symmetry is broken, a mixing of the two eigenspaces
can change the topological phase.

Time-reversal symmetry θ leads to a particularly interesting and well-known
topological classification. Unlike spatial symmetries, it is an anti-unitary symmetry
and squares to −1 in the spinful case. As a result, the Bloch functions come in
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so-called Kramers pairs [38, 39]

θ
∣∣u I

m,k
⟩
=
∣∣u II

m,k
⟩

(3.24)
θ
∣∣u II

m,k
⟩
= −

∣∣u I
m,k
⟩
.

There is a gauge in which these states are smooth [44, 45], and thus they have
well-defined, opposite [50] individual Chern numbers

C I
m = −C II

m . (3.25)

Furthermore, the hybrid Wannier charge centers are related by [50]

x̄ I
m(ky) = x̄ II

m (−ky), (3.26)

meaning that they are degenerate for the time-reversal invariant lines ky = 0, π.
In order to define a topological invariant, we group the states by their pair indices
I, II. The two groups then have individual Chern numbers

C I = −C II . (3.27)

However, these Chern numbers are not gauge invariant. This can be seen by
changing the sign of one of the two states:∣∣ũ II

m

⟩
=
∣∣u I

m

⟩
(3.28)∣∣ũ I

m

⟩
= −

∣∣u II
m

⟩
These states still obey eq. 3.24, and the individual Chern number of each state
remains the same. Yet the two states have switched their pair indices. As a result,
the Chern number C I is changed by C II

m − C I
m = 2C II

m . Since this re-labeling
of Kramers pairs can only ever change the Chern numbers by an even number, a
topological invariant can be defined as

Z2 = C I
m mod 2. (3.29)

In practice, the states do not need to be split by their pair indices to calculate
the Z2 invariant. Instead, we can use the fact that the hybrid Wannier charge
centers must be doubly degenerate at the time-reversal invariant momenta. An
arbitrary line between zero and π (dotted green line in Fig. 3.7) will cross an even
number of HWCC in the topologically trivial case, and an odd number in the non-
trivial case [50]. This principle is used in Z2Pack to calculate the Z2 invariant.

When computing the Z2 invariant numerically, the challenge using the approach
described above is that we cannot uniquely identify hybrid Wannier charge centers.

23



3.3 Time-reversal Symmetry: Z2 Classification
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Figure 3.7: Figure previously published in refs. [1, 6]. Hybrid Wannier charge
centers for a two-band time-reversal invariant system. (a) Trivial phase. The two
bands each have a zero individual Chern number. (b) Non-trivial phase. The two
bands have individual Chern numbers ±1.

In other words, we do not know how the HWCC connect between two discrete
values of ky. We can get around this issue however by choosing the line xcut(ky)
for which the number of crossings is counted in a clever way. Since we want a
crossing to be as obvious as possible, we choose it to always be in the middle of
the largest gap between any two HWCC, as shown in figure 3.8. The number of
crossings is then counted by summing up the HWCC which lie between the current
and previous value of the largest gap.
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(b)(a)
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Figure 3.8: Figure previously published in refs. [1, 6]. Sketch showing the Z2

calculation. (a) Continuous case. The HWCC (solid blue line) are crossed exactly
once by xcut (dashed orange line), at the green point. (b) Discrete case. The
HWCC (blue circles) and middle of the largest gap (orange diamonds) are known
only for discrete ky. Crossings are counted when the HWCC value lies between
the largest gaps of the current and previous lines (green circle).
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4
Type-II Weyl Semimetals

In the previous chapter, we have seen that the Chern number is well-defined on
closed surfaces in reciprocal space for an isolated set of bands. This definition
naturally leads to a topological classification of insulating materials, the Chern [12,
56] and Z2 [38, 39] insulators. By no means however is it a necessary requirement
for topological classification that a material be insulating. On the contrary, we can
use the fact that even for semimetallic materials, a large part of the Brillouin zone
still has a direct band gap1. In semimetals, then, topological phases usually come in
the form of nodal features, such as nodal lines or points. The topological protection
then comes in the form of integer invariants on lines or spheres surrounding these
nodes. In this chapter, we will first discuss a simple such nodal feature, the Weyl
node [57–61]. Next, we will discuss how a change in the Weyl node band structure
leads to a second type [2] of Weyl node, and show some material examples for this
phase. Finally, we will give a brief overview of other topological semimetal phases.

4.1 Weyl Nodes
The Weyl node [57–60] is a linear crossing of two bands in three dimensions. In
its simplest form, it can be locally described by the Hamiltonian

H(k) = ±
∑
i

kiσi, (4.1)

where σi are the Pauli matrices, and the sign the chirality of the node. The two
bands which cross at a Weyl node form linear cones, as shown in fig. 4.1. Topo-

1The bandstructure has a direct band gap at a given k-point if there is an energy gap between
the Nth and N + 1st bands, where N is the occupation number.
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kx

ky

E

Figure 4.1: The band structure of a rotationally symmetric Weyl node forms two
opposing cones (orange, blue) touching at the Weyl node.

logically, a Weyl node of positive chirality acts as a quantized source of Berry
curvature, and a negative-chirality node acts as a sink. We can interpret this as
a topological charge. As a result, Weyl nodes are stable against small perturba-
tions of the system: They can be created or annihilated only in pairs of opposite
chirality. This is remarkable insofar as the Weyl node does not require any sym-
metries to form. Instead, it is a topological feature which forms accidentally but
is nevertheless stable.

This topological charge of Weyl nodes can be used to identify them through
a topological invariant. Following Gauss’ law, the total flux of Berry curvature
through a closed surface must be proportional to the total topological charge it
encloses. In other words, the Chern number on a sphere surrounding a single Weyl
node is plus or minus one, depending on the chirality of the node [2]. We can use
this fact to numerically establish the presence of a Weyl node, using the Z2Pack
code [6].

Since the total topological charge of a material must be zero [62, 63], the sum
of Chern numbers for all Weyl nodes in a system must also cancel out. At the very
least, Weyl nodes thus come in pairs of two. The potential number and position
of Weyl nodes is further influenced by symmetries. Inversion symmetry P maps a
Weyl node W at position k into its partner −W of opposite chirality, at position
−k. Time-reversal T on the other hand also maps the Weyl node at k into one
at −k, but preserves chirality. As a result, the minimum number of Weyl nodes
to exist in a time-reversal symmetric system is four. When the product symmetry
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P ∗T is present, a Weyl node is mapped back into itself, but with opposite chirality.
Consequently, simple Weyl nodes can not exist in systems which observe P ∗ T .
The topological node which consists of such superimposed Weyl nodes of opposite
chirality is called a Dirac node [64–68]. Since the Weyl nodes of opposite chirality
could annihilate each other and leave a direct band gap, additional symmetries are
required for Dirac nodes to be stable.

The bulk-boundary correspondence introduced in section 3.1.2 can again be
used to determine the surface states of a Weyl semimetal. Since the Weyl nodes
can annihilate only in pairs, and surrounding vacuum does not contain Weyl nodes,
there must be a state on the surface connecting Weyl nodes of opposite chirality.
This surface state is called a Fermi arc [69, 70]. Similarly, when a magnetic field
is applied in any direction, two Weyl nodes of opposite chirality are connected by
a chiral Landau level [71–73]. This so-called chiral anomaly contributes negatively
to the magnetoresistance of Weyl semimetals.

4.2 Type-II Weyl Semimetals
In the previous section, we have considered only the simplest, rotationally sym-
metric Weyl node. When considering the general form of linear point crossings
between two bands, we find that a second type of Weyl nodes exist [2], as we will
show in the following. These type-II Weyl nodes exhibit markedly different physics
from their type-I counterparts.

The general Hamiltonian for linear crossings of two bands is given by

H(k) = ε0 + kTAσ, (4.2)

where k = (kx, ky, kz)
T is position in reciprocal space, σ = (σ0, σx, σy, σz)

T the
Pauli vector, and A a real-valued 3 × 4 coefficient matrix. Of particular impor-
tance is the contribution of the σ0 terms. These represent a breaking of con-
tinuous rotational symmetry, which is part of the so-called Lorentz invariance.
They are thus not allowed in high-energy physics. This limitation does not exist
for condensed-matter systems, and thus we can create quasiparticles without a
high-energy physics equivalent.

Accordingly, we split the coefficient matrix into two parts

A =

 |
v BT

|

 , (4.3)

where v is a vector of length three and contains the σ0 terms, and B is a 3 × 3
matrix and contains the σ{x,y,z} terms. The energy bands of this Hamiltonian are
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kx

ky

E

Figure 4.2: In a Weyl node of type II, the upper cone (orange) of the band structure
dips below the nodal point energy (gray plane), resulting in an open Fermi surface.

given by a “kinetic” term T given by v, and a “potential” term U given by B:

ε± = ε0 + vTk ±
√

kTBTBk = ε0 + T (k)± U(k) (4.4)

While the kinetic term contributes to both bands equally, the potential term is
responsible for the splitting between the two bands. By squaring the two terms,
we find that the kinetic term dominates when

kTvvTk > kTBTBk. (4.5)

This condition can be satisfied – for some k – exactly if the symmetric matrix

C = BTB − vvT (4.6)

has negative eigenvalues. If this is the case, the Weyl node changes its shape in
an interesting way: While the upper band of the regular (or type-I) Weyl node
forms an upright cones as shown in fig. 4.1, the “kinetic” term tilts and stretches
this cone in such a way that it partially dips below the energy level of the Weyl
node itself, as shown in fig. 4.2. Correspondingly, the Fermi surface of this newly
discovered [2] type-II Weyl semimetal changes drastically: It goes from being a
closed sphere surrounding the Weyl point to being an open surface. Due to this
change in the Fermi surface, the chiral Landau level appears only for magnetic field
directions where T (k) > U(k) [2], and the corresponding negative contribution to
magnetoresistance is anisotropic.
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It bears noting that, while the type-II Weyl state has markedly different phys-
ical properties from its type-I counterpart, the two states are not topologically
distinct. A type-II Weyl node can smoothly be transformed into a type-I one and
vice versa, by tilting the cone.

4.2.1 Material Examples
In refs. [2, 3, 5], we have predicted type-II Weyl nodes to exist in WTe2 [2],
MoTe2 [5], WP2 and MoP2 [3] compounds. In this section, we give a brief summary
of these results.

The type-II Weyl state was initially discovered in tungsten ditelluride (WTe2) [2].
This material crystallizes in an orthorombic lattice, with space group Pmn21
(#31). It has time-reversal symmetry, but not inversion. As a result, the product
symmetry P ∗T is broken and Weyl nodes are allowed. Four pairs of Weyl points,
related by mirror symmetries, are present in WTe2. One of these pairs consists
of a negative chirality Weyl node at k1 = (0.1214, 0.0454, 0), 58 meV above the
Fermi level, and a positive chirality one at k2 = (0.1218, 0.0382, 0), 52 meV above
the Fermi level. The type-II nature of these Weyl nodes comes from the fact that
they are formed at a touching point of electron and hole pockets.

It is noteworthy that the Weyl points of opposite chirality are very close to
each other in WTe2. As a result, they can easily be annihilated by applying
strain, for example under tensile strain in x̂ - direction. Compressive strain in the
same direction on the other hand separates the Weyl points further, moving the
Weyl node initially located at k2 moves towards the ky = 0 plane. At roughly
2% compressive strain, this Weyl node meets its mirror partner at ky = 0 and
annihilates, leaving only four Weyl nodes in total – two symmetry-related pairs.
As discussed in section 4.1, this is the minimum number of Weyl nodes which is
allowed under time-reversal symmetry.

In the structurally and chemically similar compound molybdenum ditelluride
(MoTe2), this arrangement of four Weyl nodes in the kz = 0 plane is exactly what
we found [5], in a previously unreported orthorombic γ configuration. However, in
MoTe2 the arrangement of Weyl nodes is also very sensitive to details in the crystal
structure. Before the work of ref. [5], a slightly different orthorombic configuration
of MoTe2 was already predicted to host type-II Weyl nodes [74]. In this structure, it
hosts eight in-plane [74] and an additional 16 out-of-plane [5] Weyl nodes. As such,
both WTe2 and MoTe2 lie on a cusp of topological phase transitions. Nevertheless,
spectroscopic evidence [75–78] supports the existence of Weyl nodes in MoTe2.

A more robust type-II Weyl state is present in the transition metal diphosphides
MoP2 and WP2 [3]. Again, eight Weyl points are present in the kz = 0 plane, in
pairs related by mirror symmetry. However, unlike the case of WTe2 where the
nodes in each pair have opposite chirality, these are pairs of Weyl nodes with the
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same chirality. As a result, they can not easily be annihilated. Spectroscopic and
transport evidence for the existence of this type-II Weyl state was also found [79].

4.3 Other Topological Semimetals
Spurred by the realization that the limits of Lorentz invariance do not apply to
condensed matter systems, the recent years have seen the discovery of a plethora
of novel topological phases in semimetals [80–84]. For example, Winkler et al. [80]
discovered a threefold degenerate nodal point in InAs0.5Sb0.5. This nodal point oc-
curs along a high-symmetry line, where a single band crosses a two-fold degenerate
one. Even higher degeneracies are possible on high-symmetry points, where Brad-
lyn et al. [81] have discovered three-, six-, and eight-fold degenerate topological
nodes.

Apart from the point nodes which exhibit a topological charge, line nodes can
also be topologically protected [83, 85–88]. In line nodes, the topological nature
can be determined by calculating the Berry phase on a closed loop C linking the
nodal line. While the Berry phase on a closed loop is not quantized in general,
the topological phase is revealed when contracting C while keeping it linked with
the nodal line. If there is no nodal line passing through C, the Berry phase must
approach zero as C approaches a trivial path. If there is a nodal line passing
through C on the other hand, the Berry phase can approach a non-zero value. The
reason for this is that C cannot be fully contracted without passing a node, where
the Berry phase is undefined. As a result, the nodal line can not be gapped locally
– instead, it must be fully contracted to be removed.

Recently, Bzušek et al. [84] have shown that such nodal lines can not only form
accidentally, but also be enforced by crystal symmetries. In fact, these nodal lines
form chains spanning across the Brillouin zone. In section 9.3.1, we will briefly
discuss such a nodal chain semimetal.
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5
An Algorithm for Calculaধng Phase
Diagrams

Before continuing to describe how topological semimetal states can arise in real
materials, we digress to introduce an algorithm for computing phase diagrams.
This is a common task in computational physics, which can naively be achieved
by evaluating the phase on a regular mesh of points in the phase space. However,
for an n - dimensional phase diagram this approach scales with O(1/∆xn) in the
discretization step size ∆x. Since the essential features of a discrete phase diagram
are the boundaries between phases, the scaling can be reduced to O(1/∆xn−1)
by concentrating the evaluation of the phase around these boundaries1. In this
chapter, we present such an algorithm and its implementation, and discuss its
convergence properties. An example application of the algorithm is shown in the
subsequent chapter.

5.1 Problem Descripধon

In the following, we consider an n - dimensional phase space S, consisting of
discrete phases S = P1 ∪P2 ∪ · · · ∪PN . We assume there is an evaluation function
which can uniquely identify the phase of a given point p ∈ S. This condition is
sufficient for running the phase diagram algorithm as described in section 5.2. For
the discussions of the computational complexity (section 5.2.1) and convergence
characteristics (section 5.3) of the algorithm, we will further make the following

1For the special case of one-dimensional problems, the algorithm reduced to the well-known
bisection method and scales with O(log(1/∆x)).
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assumptions:

1. Each phase has dimension n everywhere, that is the phase does not have any
lower-dimensional parts.

2. For each of the connected components Qj
i of Pi = Q1

i ∪ · · ·∪QM
i , the interior

Qj
i − ∂Qj

i is also connected.

3. The phase boundaries ∂Qj
i are of dimension n − 1. Note that this excludes

fractals.

5.2 Descripধon of the Algorithm
The algorithm for calculating phase diagrams is based on the idea of a quadtree
structure: Initially, the phase space is covered by boxes (n - dimensional hyper-
rectangles) of equal size. These are then recursively split into smaller boxes. To
decide which boxes should be split, each box is assigned a phase according to the
evaluated points it contains. If the points all have the same phase, the box is con-
sidered to be of that phase. If there are points of different phase within the box
on the other hand, the phase of the box is considered undecided. These undecided
boxes are split, if they have not reached a given minimum size.

When splitting a box, the phase is evaluated at its corners and midpoint2.
Since these points could also be contained in any of the neighboring boxes, the
phases of these boxes need to be updated. This step is crucial in creating the
convergence properties shown in section 5.3, since it allows boxes to be split even
if they were initially found to have a definite phase, as shown in fig. 5.1(c). To
make this process efficient, each box needs to maintain a list of neighboring boxes,
which also needs to be updated when splitting a box.

Given these rules for splitting boxes, running the algorithm is simple: First,
the whole phase space is covered in regular boxes, which are all scheduled to be
split3. The procedure is then run until no more boxes larger than the minimum
size that need splitting remain.

5.2.1 Computaধonal Complexity
To estimate the computational complexity of the algorithm, we note that a box
can only be split if it contains points of at least two phases. Consequently, the

2This choice of points to evaluate is the minimum number required to produce the convergence
properties shown in section 5.3. Alternatively, one could also choose to evaluate all corners of
the split boxes.

3Alternatively, one could evaluate the corners of these boxes to decide whether they should
be split.
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(a) (b) (c)

Figure 5.1: Illustration of a single step of the phase diagram algorithm. The exact
phase boundary is shown with an orange line. Boxes are colored according to their
phase, and boxes of undecided phase are shown in white. (a) Initially, only the
lower left box has an undecided phase. (b) The calculation of the corners of the
lower left box causes the lower right box to become undecided. (c) The lower right
box is split. Only undecided boxes of a smaller size remain.

box must intersect a phase boundary. We can thus find an upper bound for the
number of boxes that need to be split by assuming that all boxes which intersect
a phase boundary are split.

For simplicity, we re-scale the phase space such that the initial boxes are hy-
percubes of side length d. After being split s times, the boxes will thus have side
length ds = d/2s. These boxes can only be split if they are within

√
n · ds of the

nearest phase boundary, where
√
n is the length of the n - dimensional diagonal.

Consequently, the total volume of boxes that can be split scales as O(ds). The
number of boxes contained in this volume scales as

1

dns
· O (ds) = O

(
1

dn−1
s

)
. (5.1)

The computational effort for splitting a box is a constant. Thus, the total com-
plexity for calculating the phase diagram with accuracy ∆x = d/2m is given by

O

(
m∑
s=1

1

dn−1
s

)
. (5.2)

Here, m = log2 (d/∆x) is the required number of steps.
First, we consider the special case of n = 1. Since d0s = 1, the computational

complexity is

O

(
m∑
s=1

1

)
= O(m) = O (log(d/∆x)) = O (log(1/∆x)) . (5.3)
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For higher-dimensional problems,

m∑
s=1

1

dn−1
s

=
m∑
s=1

(
2s

2m∆x

)n−1

=
1

∆xn−1

m∑
s=1

1

2(m−s)(n−1)︸ ︷︷ ︸
converging

= O(1/∆xn−1), (5.4)

and thus the algorithm scales with O(1/∆xn−1).

5.2.2 Asynchronous Execuধon
On a technical note, this algorithm lends itself well to be implemented in an asyn-
chronous manner, using coroutines. Contrary to subroutines which run sequen-
tially until they are completed, a coroutine can suspend its execution to wait for
some other task to be completed, and then continue executing. Here, the routine
which splits a given box can suspend its execution while waiting for the phase
calculation to be completed. This allows other boxes to be split in the meantime,
which can in turn schedule the phase calculation at a given point. In some cases,
this can dramatically reduce the time to solution for calculating the phase diagram.

For example, if many phase calculations can be run concurrently as indepen-
dent serial processes – a technique known as serial farming – an asynchronous
implementation guarantees the maximal utilization of the available computational
resources without requiring concurrent processes. If on the other hand there is a
significant overhead in starting the process which computes the phase, it can be
beneficial to group calculations together into batches that are computed in parallel
on a single process. In this scenario, the asynchronous execution again improves
throughput, by making sure that the maximum number of points can be grouped
together.

5.3 Convergence Properধes
In this section, we will discuss the convergence properties of the phase calculation
algorithm. In particular, we will show some criteria for determining if the algorithm
will converge towards the correct phase diagram, and sketch a proof for these
criteria.

5.3.1 A Note on Terminology
To show the convergence properties of the phase calculation algorithm, we must
first define some nomenclature:

36



An Algorithm for Calculating Phase Diagrams

Figure 5.2: Phase diagram of a two-phase system where each phase contains an
initial point in its interior. Boxes are shaded according to their phase, and initial
points are marked with a dot.

• Two neighboring boxes are called direct neighbors if they share an (n− 1) -
dimensional surface.

• For a set A, ∂µA =

{
x ∈ A

∣∣∣∣ inf
y∈∂A

∥x− y∥ ≤ µ

}
defines the border of A with

thickness µ.

• intµ(A) = A− ∂µA defines the interior of A where the border of thickness µ
is removed.

• The algorithm is said to converge towards covering a connected subset Qj
i if

for any ε > 0 a minimum box size ∆x can be chosen such that intε
(
Qj

i

)
is

completely covered by boxes of phase Pi.

5.3.2 Phase Containing a Starধng Point
The convergence properties of the algorithm for calculating phase diagrams depend
sensitively on the choice of the initial mesh. In this section, we will show that the
algorithm converges towards covering a connected phase if it contains an initial
point, as shown in fig. 5.2. We will start by showing some basic properties of the
algorithm, which will be useful in proving the convergence.
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(a)

intμ(Qi
j)

(b)

intμ(Qi
j)

Figure 5.3: Interior intµ(Qj
i ) of a connected phase, with a border of thickness µ

(orange line) removed. (a) For large values of µ, the interior can be disconnected.
(b) Making µ small enough re-connects the parts of the interior.

Lemma 1. Direct neighbors cannot have different decided phases.

Proof. By construction, each (n − 1) - dimensional surface of a box contains at
least one evaluated point. Since this is true for the smaller box in a pair of direct
neighbors, the two boxes share at least one point. Consequently, the phase of each
box is either undecided, or the same phase as the shared point. Thus, the two
neighbors cannot have different decided phases.

Lemma 2. intµ
(
Qj

i

)
is connected for some µ > 0.

Proof. This follows from the assumption that each phase must have dimension n
everywhere, as illustrated in fig. 5.3.

Lemma 3. The boxes which intersect int√n∆x

(
Qj

i

)
cannot have undecided phase.

Proof. By construction, the boxes which have undecided phase must have the
minimal side length ∆x, and their diagonal has length

√
n∆x. In order to have an

undecided phase, they must also intersect a phase boundary. Since the distance to
the nearest phase boundary is larger than

√
n∆x for any point within int√n∆x

(
Qj

i

)
,

the boxes which intersect it cannot have undecided phase.

Theorem 1. If a connected component Qj
i contains an evaluated point p in its

interior, the algorithm converges towards covering it.

Proof. Given ε > 0, choose ∆x such that:

• ε >
√
n∆x,

• Q̃ := int√n∆x

(
Qj

i

)
is connected (following lemma 2),

• Q̃ contains the evaluated point p.
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Figure 5.4: Example phase which does not converge even though it contains an
initial point (the lower left corner) at the border. The phase boundaries are shown
in orange, and boxes are colored according to their phase.

Following lemma 3 we know that the box containing p cannot have undecided
phase, hence it must have the (correct) phase Pi. The rest of the boxes which
intersect Q̃ can be connected to that box via direct neighbors, hence they must
have the same phase. Consequently, intε

(
Qj

i

)
is covered by boxes of phase Pi.

Note that we have used the fact that p must be in the interior of the connected
phase in choosing ∆x such that p is contained in Q̃. In fact, theorem 1 is no longer
true if the point p lies on the border ∂Qj

i , as is shown in fig. 5.4.
Also, note that the initial point in the interior of the connected phase is used

only to ensure that there is at least one box intersecting Q̃ which has the correct
phase. Hence, we can write a modified version of theorem 1, which will be useful
in proving theorem 3:

Theorem 2. If the interior of a connected component Qj
i intersects with a box of

phase Pi, the algorithm converges towards covering Qj
i .

5.3.3 Sufficient Condiধon for Convergence to Covering a Phase
In this section, we will show a sufficient condition for convergence to covering a
phase, even if the phase does not contain an initial point. We will first show a
statement about a phase diagram with three phases, and then generalize this to
an arbitrary number of phases.
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Q1

Q2

X

ε

Figure 5.5: Phase diagram with three phases P1 (purple), P2 (orange) and PX

(blue). The points within distance ε of both P1 and P2 are marked in green. The
set Sε defined in eq. (5.5) contains all points except those marked in green.

Theorem 3. Let Q1, Q2 and X be three connected subsets of different phases P1,
P2 and PX . Both Q1 and Q2 contain an evaluated point in their interior, and they
both touch X with an (n − 1) - dimensional boundary.4 The algorithm then also
converges towards covering X.

Proof. First, we define a set Sε containing all points in X, Q1 and Q2 except those
within a distance ε from both P1 and P2, as illustrated in fig. 5.5:

Sε :=

{
x ∈ Q1 ∪Q2 ∪X

∣∣∣∣max
(

inf
y∈P1

∥x− y∥, inf
y∈P2

∥x− y∥
)
> ε

}
(5.5)

Since Q1 and Q2 are both connected to X by an (n− 1) - dimensional border,
we can choose ∆x small enough that S = S2

√
n∆x is connected. Since a box

of undecided phase must have border length ∆x, it cannot intersect S, P1 and
P2 simultaneously. Also, if an undecided box intersecting S contains phase P1,
neighboring undecided boxes cannot contain phase P2.

We can construct a path consisting of boxes of side length ∆x intersecting S,
connecting the evaluated point in Q1 to the one in Q2. The boxes do not need to
exist in the result of the algorithm, but they should be aligned to the evaluation
grid, as shown in fig. 5.6(a).

Given this path, we can construct a path consisting of boxes that are calcu-
lated by the algorithm by choosing all boxes which intersect the previous path,
as shown in fig. 5.6(b). Since this path connects boxes of phase P1 and P2 via

4This implies that X is not an island completely surrounded by only Q1 or Q2.
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(a) (b)

Figure 5.6: Example phase diagram with three phases, where only two contain a
starting point. The phases P1 and P2 are shown in orange and purple respectively,
and X is shown in blue. (a) A path of boxes constructed as described in the proof
of theorem 3. The starting points are shown with dots, and the final phase diagram
is shown in light colors. (b) Boxes which are calculated for the same value of ∆x.
Boxes which intersect the path shown in the left panel are shown in darker color.

direct neighbors, it must contain at least one box of undecided phase. Because
undecided boxes cannot contain phases P1 and P2 simultaneously, it must contain
either phases P1 and X, or P2 and X. Without loss of generality, we pick the last
undecided box containing phases {P1, X} along the path. The next box B along
the path can then have either phase P1 or X. We can show by exclusion that the
next box B must have phase X:

• By construction, it cannot contain phases {P1, X}.

• It cannot have phase P2, since it is the direct neighbor of a box with phases
{P1, X}

• It cannot have undecided phase {P2, X} since all boxes intersect S, and its
direct neighbor has undecided phase {P1, X}.

• If the box has phase P1, the path from B to the box containing the initial
point in Q2 again connects boxes of phase P1 and P2 via direct neighbors.
As a result, there must be another undecided box along the path, connecting
P1 to the next phase. Since there cannot be any undecided boxes contain-
ing both P1 and P2, it must again contain {P1, X}. This contradicts the
construction that we picked the last such box.
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5.4 Conclusion

From theorem 2, it follows that the algorithm will converge towards covering X.

Having shown a criterion for phase diagrams of three phases to converge, we
can now generalize this to many phases:

Theorem 4. Let X be a connected subset of a phase PX . If there are two connected
sets S = {Qj

i}i,j and S ′ = {Qj′

i′ }i′,j′, such that

• S and S ′ are connected to X via an (n− 1) - dimensional border

• S and S ′ contain a starting point in their interior

• The phases in S and S ′ are pairwise different, i.e. {Pi}i ∩ {Pi′}i′ = ∅,

the algorithm converges towards covering X.

Proof. First, we consider a phase diagram where all phases with indices i are as-
signed a phase PS, and all phases with indices i′ are assigned phase PS′ . From
theorem 3, it follows that the algorithm will converge towards covering X. To
recreate the original problem, we split the phases PS and PS′ back up into their
original phases. Because this process only ever adds different phases and does not
merge them together, it can only add more boxes of undecided phase. Conse-
quently, all boxes which are split in the simplified phase diagram will still be split,
and the algorithm will still converge towards covering X.

This property can allow calculating even complex phase diagrams with only
few starting points. As an example, fig. 5.7 shows the phase diagram of water,
without the critical point. This phase diagram was calculated using only one initial
box, with data extracted from the figure [89]. Even though the five initial points
only show four phases, the algorithm correctly identifies all fourteen phases from
the input figure.

5.4 Conclusion
We have introduced an algorithm for calculating diagrams of discrete phases. By
constricting the phase evaluations to the vicinity of phase boundaries, this algo-
rithm can significantly reduce the number of such evaluations needed to calculate
the phase diagram. While there are some cases where the algorithm will not con-
verge to the true phase diagram, namely when a phase is completely enclosed in
another phase, we have shown a relatively simple criterion which guarantees con-
vergence. We expect this algorithm to be applicable to a wide range of physical
problems.
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S, XI (orthorombic)
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Figure 5.7: Phase diagram of water, calculated with only one initial box. The
phase data is extracted from the figure [89].
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6
Weyl Fermions Emerging in a
Magneধc Field

The content of this chapter was previously published in ref. [7].
Recently, transition metal dipnictides of the type AB2 (A ∈ {Ta, Nb}, B ∈

{As, Sb}) have gained a lot of attention [90–97] for their giant magnetoresistance.
These materials are semimetals, but without a direct closure of the band gap.
Consequently, they do not host any Weyl or Dirac points.

The exact nature of magnetoresistance in these materials - especially the de-
pendency on the direction of the magnetic field - is still under active investigation.
Negative magnetoresistance has been observed experimentally for NbAs2 [95, 96],
TaAs2 [95] and TaSb2 [95, 98]. Anomalous - albeit not negative - magnetoresis-
tance has been observed for NbSb2[90] and TaAs2 [93]. However, there are also
experiments which point to the contrary, which is that there is no negative mag-
netoresistance in these materials. In Ref. [94], negative magnetoresistance was
observed at first but then determined to be an artifact of the measurement setup.

In the following, we propose a mechanism to produce Weyl nodes in these
materials under the influence of a magnetic field. The chiral anomaly associated
with these Weyl nodes is a possible source of negative magnetoresistance. Such
an appearance of Weyl points under magnetic field has recently been proposed
in Ref. [99]. The mechanism with which the Weyl points appear, however, is a
different one – in this work the Weyl points appear from a previously gapped state,
while the Ref. [99] discusses Weyl points arising from the splitting of a four-fold
crossing.

The chapter is structured as follows: In the first section, the atomic and elec-
tronic structure of the four compounds is described. A four-band Hamiltonian for
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TaAs2 is derived from symmetry considerations and fitted to the band structure.
In the second section, the topology of the band structure is studied, first without
magnetic field and then by applying a Zeeman term. We find that this leads to
the appearance of Weyl points.

6.1 Atomic and Electronic Structure of AB2 compounds

6.1.1 Atomic Structure
In the following, the atomic structure of TaAs2 [100], TaSb2 [101], NbSb2 [102]
and NbAs2 [103] is described.

The reduced unit cell of AB2 compounds has the general form
a1 = ( a, b, 0) (6.1)
a2 = (−a, b, 0)
a3 = (−c, 0, d)

with parameters as given in table 6.1 [100, 102].

a b c d
TaAs2 4.6655 1.6915 3.8420 6.7330
TaSb2 5.11 1.822 4.1950 7.1502
NbAs2 4.684 1.698 3.8309 6.7933
NbSb2 5.1198 1.8159 4.1705 7.2134

Table 6.1: Unit cell dimensions (in Å) for AB2 compounds.

Each unit cell contains 2 formula units. The atoms are located at general
Wyckoff positions (x,−x, y), (−x, x,−y), for (x, y) as shown in table 6.2 [100, 102].

Figure 6.1 shows the reduced unit cell and 1. BZ of TaAs2. The k-point path
along which band structure calculations are performed is indicated. In the basis
reciprocal to that of eq. (6.1), the special k-points are given by

Γ = (0, 0, 0) (6.2)
A = (0, 0, 0.5)

L = (0.5, 0, 0.5)

M = (0.5, 0.5, 0.5)

V = (0.5, 0, 0)

Y = (0.5, 0.5, 0).
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A B1 B2
TaAs2 (0.157, 0.1959) (0.4054, 0.1082) (0.1389, 0.5265)
TaSb2 (0.152, 0.19) (0.405, 0.113) (0.147, 0.535)
NbAs2 (0.1574, 0.1965) (0.4059, 0.1084) (0.14, 0.528)
NbSb2 (0.1521, 0.1903) (0.4051, 0.1127) (0.1475, 0.5346)

Table 6.2: Atomic positions (x, y).

6.1.2 Electronic Structure
Electronic structure calculations were performed in VASP [30], with projector
augmented-wave (PAW) [104, 105] pseudopotentials. The PBE approximation
[16] was used, and spin-orbit coupling was included in the potentials. The self-
consistent field (SCF) calculations were performed on a 11 × 11 × 5 Γ - centered
grid for TaAs2, and a 10× 10× 5 Γ - centered grid for NbSb2. The energy cutoff
given in the potential files was used, which is 293.2 eV for NbAs2 and NbSb2, and
223.7 eV for TaAs2 and TaSb2.

Additionally, the PBE calculations were tested against the accurate HSE06
hybrid functional [106, 20]. The hybrid SCF calculations for the band structures
were performed on a Γ - centered 6×6×4 grid for all materials. For the generation
of the Wannier tight-binding model of NbSb2 a Γ - centered 10× 10× 5 grid was
used.

The band structure of TaAs2 and NbSb2 is shown in figs. 6.2 and 6.3. Both
materials exhibit a pair of electron and hole pockets near the M - point, where
the minimum band gap is about 318 meV (120 meV without hybrid functionals)
in the case of TaAs2, 151 meV (98 meV) for TaSb2, 261 meV (22 meV) for NbAs2,
and 67 meV (18 meV) in the case of NbSb2. A more complete calculation of the
band structure can be found for example in Ref. [107].

47



6.1 Atomic and Electronic Structure of AB2 compounds

(a)

(b)

Figure 6.1: (a) Reduced unit cell of TaAs2. (b) First BZ of TaAs2. The k-point
path is indicated in blue.
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Figure 6.2: Calculated band structures of TaX2 compounds. The inset shows
electron and hole pockets around M . The orange line represents calculations using
hybrid functionals. (a-b) TaAs2 (c-d) TaSb2
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Figure 6.3: Calculated band structures of NbX2 compounds. The inset shows
electron and hole pockets around M . The orange line represents calculations using
hybrid functionals. (e-f) NbAs2 (g-h) NbSb2
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6.1.3 Symmetry Operaধons and k · p Model

The AB2 compounds studied here have C2/m symmetry (space group 12). The
rotation axis is along the cartesian y-axis. In reduced coordinates, the symmetry
matrices are as follows:

• Identity E = I3×3 (6.3)

• Rotation C2y =

0 1 0
1 0 0
0 0 −1


• Parity P = − I3×3

• Mirror My = PC2y =

 0 −1 0
−1 0 0
0 0 1



E C2y P My

Γ+
3 1 i 1 i

Γ+
4 1 −i 1 −i

Γ−
3 1 i −1 −i

Γ−
4 1 −i −1 i

Table 6.3: Character table for the relevant double group representations of
C2m [108].

From the first-principles wave-functions, the representations corresponding to
the two highest valence and two lowest conduction bands at the M - point were
determined using the WIEN2k code [33, 109]. They were found to be Γ+

3 ,Γ
+
4 and

Γ−
3 ,Γ

−
4 , respectively. Their characters are shown in table 6.3, which comes from

table 15 on page 35 in Koster et al. [108]. Consequently, the symmetry represen-
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6.1 Atomic and Electronic Structure of AB2 compounds

tations in these four bands are given by

• Identity E = I4×4 (6.4)

• Rotation C2y =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i



• Parity P =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



• Mirror My = PC2y =


i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 i



• Time-reversal T =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 K̂

For each of the symmetry operations g, the constraint

H(k) = D(g)H(g−1k)D(g−1) (6.5)

is imposed on the 4× 4 Hamiltonian, where D(g) is the symmetry representation.
By applying these constraints on the general form of a four-band Hamiltonian

H(k) =
∑

i,j∈{0,x,y,z}

Cij(k)(σi ⊗ σj), (6.6)

we find the Hamiltonian to be of the form

H(k) = C00(k)(σ0 ⊗ σ0) + Cxx(k)(σx ⊗ σx) + (6.7)
Cxy(k)(σx ⊗ σy) + Cxz(k)(σx ⊗ σz) +

Cy0(k)(σy ⊗ σ0) + Cz0(k)(σz ⊗ σ0),

where the Cij(k) are given up to second order in k∗ = k −M (in reduced coordi-
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nates) by

C00(k∗) = C1
00 + Cx2+y2

00 ((k∗x)
2 + (k∗y)

2) + (6.8)
Cxy

00 k
∗
xk

∗
y + Cxz−yz

00 (k∗xk
∗
z − k∗yk

∗
z) +

Cz2

00 (k∗z)
2

Cz0(k∗) = C1
z0 + Cx2+y2

z0 ((k∗x)
2 + (k∗y)

2) + (6.9)
Cxy

z0 k
∗
xk

∗
y + Cxz−yz

z0 (k∗xk
∗
z − k∗yk

∗
z) +

Cz2

z0 (k∗z)
2

Cxx(k∗) = Cx−y
xx (k∗x − k∗y) + Cz

xx k
∗
z (6.10)

Cxy(k∗) = Cx−y
xy (k∗x − k∗y) + Cz

xy k
∗
z (6.11)

Cxz(k∗) = Cx+y
xz (k∗x + k∗y) (6.12)

Cy0(k∗) = Cx+y
y0 (k∗x + k∗y). (6.13)

The general procedure for calculating the terms allowed by symmetry in a k · p
model is described in chapter 7.

These 16 parameters were numerically fitted to the band structure of TaAs2
using the scipy [110] package, to obtain the values in table 6.4. The resulting
band structure around the M -point is shown in fig. 6.4. Comparing it to the band
structure obtained from first-principles reveals that the approximation is accurate
in the immediate vicinity of the M -point, but breaks down at around 6% of the
distance along the lineM−A. Importantly, the minimum band gap is not preserved
in this model. Nevertheless, the model can be used to qualitatively study effects
in TaAs2, owing to the fact that it contains the correct symmetry representations.

[eV] C1
00 = 7.066 C1

z0 = −0.224

[eVÅ] Cx+y
xz = 1.272 Cx+y

y0 = 1.270
Cx−y

xx = −0.061 Cx−y
xy = −1.999

Cz
xx = −0.554 Cz

xy = −0.253

[eVÅ2
] Cx2+y2

00 = −71.21 Cx2+y2

z0 = 56.30
Cxy

00 = −137.1 Cxy
z0 = 123.1

Cxz−yz
00 = 1.52 Cxz−yz

z0 = −1.49

Cz2

00 = −0.84 Cz2

z0 = −1.88

Table 6.4: Parameters of the 4× 4 Hamiltonian of TaAs2 around M up to second
order.
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Figure 6.4: TaAs2 band structure of the k ·p model (thick orange line), compared
to the first-principles result (black lines).

6.2 Band Structure Topology

In this section, we describe the band structure topology and the influence of mag-
netic field. First, we describe the topology in the absence of magnetic field for all
four compounds. Then, we show that Weyl points appear under sufficient magnetic
field. This result is shown first for the k ·p model of TaAs2 derived in section 6.1.3,
and then for a tight-binding model of NbSb2 derived from first-principles.

6.2.1 Band Structure Topology without Magneধc Fields

In the absence of magnetic field, there is no direct band gap closure in AB2 com-
pounds. Since the valence bands thus form a well-defined manifold, they can be
classified – just like insulators – according to the topology of these valence bands.
Because time-reversal symmetry is fulfilled, a Z2 classification is possible.

All compounds were found to be weak topological insulators, with Z2 indices
0; (111). That is, all time-reversal invariant planes ki = 0, 0.5 have a non-trivial
Z2 index ∆ = 1. This result was derived from first-principles using the Z2Pack
code [6], and agrees with previous studies [93, 95, 107]. The corresponding evolu-
tion of Wannier charge centers is shown, for the case of TaAs2, in fig. 6.5.
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Figure 6.5: Wannier charge center evolution for the time-reversal invariant planes
of TaAs2. (a) kx = 0 (b) kx = 0.5 (c) ky = 0 (d) ky = 0.5 (e) kz = 0 (f) kz = 0.5

6.2.2 Effect of Zeeman Spliষng on the k · p Model for TaAs2
Here we study the effects of magnetic field on TaAs2 by adding a Zeeman splitting
term to the k · p model derived in section 6.1.3 (eq. (6.7)). The splitting term is
given by

∆H = cxσ0 ⊗ σy + cyσ0 ⊗ σz + czσ0 ⊗ σx, (6.14)

where ci is the strength of the Zeeman splitting induced by the magnetic field in
that direction, that is

ci =
∑
j

gijµBHj. (6.15)

55



6.2 Band Structure Topology

This assumes that the g-factor is equal for all bands. The limitations of this
approximation are discussed in section 6.2.4.

Magneধc Field Along the Rotaধon Axis ŷ

When magnetic field is applied along the rotation axis ŷ, the Zeeman term (eq. (6.14))
takes the form

∆H = cyσ0 ⊗ σz. (6.16)
This term preserves all spatial symmetries of the system, breaking only time-
reversal.

Along the M−A line, the Cxx and Cyy contributions to the Hamiltonian vanish
since k∗x = k∗y and k∗z = 0. Consequently, the energy eigenvalues are given by

E(k) = C00(k)± cy ∓
√
Cxz(k)2 + Cy0(k)2 + Cz0(k)2 (6.17)

The Zeeman term counteracts the original splitting (square root term), such that
for sufficient magnetic field there will be a direct band gap closure. Away from the
M − A line, the band gap remains open, giving rise to a Weyl point.

When the Zeeman splitting is gradually switched on, two pairs of Weyl points
form at about cy = 0.11 eV. Increasing the Zeeman splitting leads to a separation
between the two nodes in a pair, with one node each moving towards the M -point.
Finally, at cy ≈ 0.25 eV, these two nodes meet at M and annihilate. This process
is shown in fig. 6.6.

The existence of these Weyl points was confirmed by verifying that the nodes
are a source or sink of Berry curvature. For this purpose, the Chern number of
spheres surrounding the points was calculated by tracking hybrid Wannier charge
centers (HWCC) on loops around the sphere [2, 5, 3, 6], using the Z2Pack code [6].
Figure 6.7 shows the evolution of the sum of HWCC for two of four nodes found
at cy = 0.12 eV, demonstrating that the two points are Weyl nodes of opposite
chirality.

General Magneধc Field Direcধon

Finally, the effects of a magnetic field in a general direction were studied. It turns
out that, even though such a field breaks the spatial symmetries of the system,
Weyl nodes still appear under a strong enough magnetic field. When magnetic
field is applied in x̂ or ẑ - direction, a single pair of Weyl points emerges from
the M point. These Weyl nodes are located on the kx = −ky plane, as shown in
table 6.5.

Figure 6.8 shows the number of Weyl points as a function of the Zeeman
splitting. To obtain this phase diagram, candidate Weyl points were identi-
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Figure 6.6: Band gap of TaAs2 in the k∗z = 0 plane for different values of the
magnetic field in y-direction, calculated from the k·p model. A dark spot indicates
the presence of a Weyl point. (a) No magnetic field. There are no Weyl points
present (b) cy = 0.11 eV. Four Weyl points have appeared on the kx = ky line. (c)
cy = 0.2 eV. The pair of Weyl points move further apart. (d) cy = 0.25 eV. Two
Weyl points has annihilated at M , leaving the other two.
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Figure 6.7: Evolution of the sum of HWCC on spheres surrounding the Weyl
points at cy = 0.12 eV splitting. (a) Weyl point at k = (0.5247, 0.5247, 0.5),
having positive chirality C = +1 (b) Weyl point at k = (0.53258, 0.53258, 0.5)
with negative chirality C = −1
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Figure 6.8: Phase diagram showing the number of Weyl points in the k · p model
of TaAs2 as a function of the Zeeman splitting (in eV).
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Splitting [eV] Weyl position k∗ Chirality
cx = 0.225 (−0.0042, 0.0042, 0.00093) −1

(0.0042,−0.0042,−0.00093) 1

cx = 0.25 (−0.025, 0.025, 0.0054) −1
(0.025,−0.025,−0.0054) 1

cx = 0.3 (−0.044, 0.044, 0.0098) −1
(0.044,−0.044,−0.0098) 1

cz = 0.225 (0.0011,−0.0011,−0.018) −1
(−0.0011, 0.0011, 0.018) 1

cz = 0.25 (0.0066,−0.0066,−0.11) −1
(−0.0066, 0.0066, 0.11) 1

cz = 0.3 (0.012,−0.012,−0.18) −1
(−0.012, 0.012, 0.18) 1

Table 6.5: Position k∗ = k −M (in reduced coordinates) and chirality of Weyl
points for Zeeman splittings in x̂ and ẑ-direction.

fied using a quasi Newton algorithm to find minima in the band gap (using
scipy.optimize.minimize [110]), for different initial guesses. In a second step,
the Chern number on a small sphere (radius 10−4 Å−1) surrounding the candidate
points was evaluated (using Z2Pack [6]), keeping only points with a non-zero Chern
number. Finally, duplicate points were eliminated by checking whether two points
lie within the diameter of the sphere of one another. An improved version of this
procedure will be discussed in detail in chapter 9.

6.2.3 Effect of Zeeman Spliষng on the Tight-binding Model for
NbSb2

Having studied the effects of Zeeman splitting on the k · p model for TaAs2, we
now study a more realistic tight-binding model for NbSb2, derived from a first-
principles calculation with hybrid functionals using the Wannier90 code [111, 112].
NbSb2 was chosen because it has the smallest direct band gap of the four mate-
rials, making it the most promising candidate for hosting Weyl points at realistic
magnetic field strength.

The Zeeman splitting for this model can again be expressed by adding the
corresponding terms to the Hamiltonian

∆H = cxσx ⊗ I22×22 + cyσy ⊗ I22×22 + czσz ⊗ I22×22, (6.18)
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Figure 6.9: Band structure of the tight-binding model for NbSb2 along the M −A
line. (a) Without Zeeman splitting. (b) With cy = 0.06 eV Zeeman splitting.

where the change in the splitting terms (compared to eq. (6.14)) is due to the
different orbital basis used for the tight-binding model. We search for Weyl points
between the last valence band and the first conduction band.

First we study the effect of applying a magnetic field in the y-direction. Fig-
ure 6.9 shows the effect of this splitting along the M−A line. For cy ≈ 0.06 eV, two
pairs of Weyl points appear close to the M − A line. The reason these points are
not exactly on the line is because the crystal symmetry is broken when construct-
ing the Wannier-based tight-binding model [111, 112]. Apart from this numerical
difference, this effect is analogous to the case of the k · p model for TaAs2, where
the two pairs of Weyl points appeared at cy = 0.11 eV.

Table 6.6 shows the positions, chirality and type of Weyl points for selected
values of the Zeeman splitting. It shows that Weyl points appear even at smaller
values of cy away from the M − A line. This is a crucial difference to the k · p
model which is valid only near the M point. Furthermore, all Weyl points found for
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these splitting values are of type II [2]. Type - II Weyl points have a tilted energy
spectrum, making their Fermi surface open instead of point-like. As a consequence,
their chiral anomaly – and their effect on magnetoresistance – is expected to be
anisotropic.

Finally, a phase diagram showing the number of Weyl points as a function
of magnetic field was calculated (see fig. 6.10). Unlike for the k · p model, the
number of Weyl points keeps increasing when the applied Zeeman term grows
stronger. Again, the reason for this difference is that Weyl points also form far
away from the M point, where the k · p approximation is no longer applicable.

For some values of the splitting, the phase diagram shows an odd number
of Weyl points, which is physically impossible. The reason for this is that the
numerical procedure used to identify the number of Weyl points may not find a
Weyl point if it is too close to another Weyl point. Since this problem occurs only
rarely (see fig. 6.11), the phase diagram is still valid overall. Also, the procedure
ensures that no Weyl point can be counted twice, so the phase diagram represents
a lower limit for the real number of Weyl points. Thus, the general result that the
number of Weyl points increases with stronger Zeeman splitting remains valid.

6.2.4 Limitaধons of the Model for Magneধc Field
In the previous sections the effect of magnetic field was modeled by applying a
Zeeman splitting to the model Hamiltonian. The discussion was simplified by
assuming that the g-factor is equal for all energy bands, and independent of k.
Here we discuss how the results might change if this assumption is not made.

If the g-factor is k-dependent, but still the same for all energy bands, the results
above will change quantitatively, but not qualitatively. The reason for this is that
a Weyl node that appears at a specific k-point will still be there, but for a different
magnetic field. That is, the order in which the Weyl nodes at different k-points
appear might change, but not the overall picture that there is an increasing number
of Weyl points with stronger magnetic field.

The same is true if the g-factor varies for different energy bands, as long as
the sign of the g-factor remains the same. Because the appearance of Weyl points
is due to the relative Zeeman splitting between the last valence and first electron
bands, it does not matter how much the splitting on each band contributes.

If the g-factors in the relevant bands have opposite sign however, there is a
qualitative change in the behavior. This is illustrated in the following with the
example of the k · p model of TaAs2 discussed in sections 6.1.3 and 6.2.2. To
account for the opposite sign of the g-factor for valence and conduction bands, the
Zeeman splitting term (eq. (6.14)) is changed to

∆H = cxσz ⊗ σy + cyσz ⊗ σz + czσz ⊗ σx. (6.19)
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Split. [eV] Position k Chir. Type
cx = 0.045 (0.4393, 0.4460, 0.5004) +1 II

(0.4359, 0.4444, 0.5026) −1 II
(0.5641, 0.5556, 0.4974) +1 II
(0.5607, 0.5540, 0.4996) −1 II

cy = 0.03 (0.3670, 0.5141, 0.0977) +1 II
(0.3655, 0.5142, 0.1004) −1 II
(0.6345, 0.4858, 0.8997) +1 II
(0.6330, 0.4858, 0.9023) −1 II

cy = 0.04 (0.3724, 0.5116, 0.0890) +1 II
(0.3627, 0.5135, 0.1055) −1 II
(0.6373, 0.4865, 0.8945) +1 II
(0.6276, 0.4884, 0.9110) −1 II
(0.9028, 0.0340, 0.5451) +1 II
(0.9018, 0.0354, 0.5390) −1 II
(0.0982, 0.9646, 0.4610) +1 II
(0.0974, 0.9658, 0.4545) −1 II

cy = 0.06 (0.3791, 0.5068, 0.0775) +1 II
(0.3592, 0.5131, 0.1108) −1 II
(0.6407, 0.4869, 0.8892) +1 II
(0.6211, 0.4929, 0.9222) −1 II
(0.9033, 0.0328, 0.5532) +1 II
(0.9006, 0.0364, 0.5314) −1 II
(0.0994, 0.9636, 0.4686) +1 II
(0.0968, 0.9671, 0.4467) −1 II
(0.4493, 0.4555, 0.5031) +1 II
(0.4309, 0.4320, 0.4825) −1 II
(0.5691, 0.5680, 0.5175) +1 II
(0.5507, 0.5445, 0.4969) −1 II

cz = 0.0475 (0.4494, 0.4384, 0.4853) +1 II
(0.4420, 0.4366, 0.4816) −1 II
(0.5580, 0.5634, 0.5184) +1 II
(0.5506, 0.5616, 0.5147) −1 II

Table 6.6: Weyl point positions (in reduced coordinates), chirality and type for
different values of the Zeeman splitting in the tight-binding model for NbSb2.

62



Weyl Fermions Emerging in a Magnetic Field

-0.08 0 0.08
cx [eV]

-0.08

0

0.08

cy [eV]

(a)

-0.08 0 0.08
cz [eV]

(b)

0
1
2
3
4
6
7
8
10
12
13
14
15
16
17
18
19
20
21
24
28

#WPs

Figure 6.10: Phase diagram showing the number of Weyl points as a function of
Zeeman splitting (in eV) for the tight-binding model for NbSb2.
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Figure 6.11: Phase diagram showing whether the number of Weyl points shown in
fig. 6.10 is even (physically possible) and odd (non-physical). The odd phases are
a relict of the numerical evaluation of the phase.
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Figure 6.12: Band gap of TaAs2 on the mirror plane with Zeeman splitting as
given in eq. (6.19). (a) At cy ≈ 0.2242 eV, a node appears at the M -point. (b)
The node expands into a line for stronger splitting (cy = 0.23 eV).

With cy splitting, the energy bands on the mirror plane is then given by

E(k) = C00(k)± cy ∓
√
Cxx(k)2 + Cxy(k)2 + Cz0(k)2. (6.20)

As in eq. (6.17), the Zeeman term counteracts the original splitting. The difference
to the previous case is that this equation holds on an entire plane in reciprocal
space instead of just a line. As consequence, we can expect the appearance of
a nodal line with sufficient Zeeman splitting. Indeed, a nodal line appears for
cy ≳ 0.2242 eV, as shown in fig. 6.12. The Berry phase on a closed path around
this nodal line was calculated to be π, using the Z2Pack [6] code. This verifies the
topological nature of the nodal line.

In conclusion, the qualitative result obtained above remains intact when the
g-factors are assumed to be k-dependent and different for valence and conduction
bands, as long as they keep the same sign. A more adequate model of the magnetic
field is needed to establish the exact qualitative and quantitative nature of the
topological phases with applied magnetic field. The current results indicate that
Weyl nodes will appear at least for some directions of magnetic field.
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6.3 Conclusions
We studied the topological phase of transition metal dipnictides of the type AB2
(A ∈ {Ta, Nb}, B ∈ {As, Sb}), with and without external magnetic field. In the
absence of magnetic field, we found – in accordance with previous results [93, 95] –
that these materials can be classified as weak topological insulators despite having
an indirect band gap closure.

The effect of a magnetic field was studied by applying a Zeeman splitting. We
found that Weyl points can appear. We showed this result first from theoretical
considerations on a four-band k · p model, and numerically on a k · p model
of TaAs2 and a tight-binding model of NbSb2. In the tight-binding model, we
found the number of Weyl points to be increasing with growing magnetic field.
For specific values of the Zeeman splitting, the type of the Weyl points in the
tight-binding model was studied, and they were all found to be of type II.

The appearance of such field-induced Weyl points could help explain the re-
duced or negative magneto-resistivity in these materials. However, it is unclear
whether the Weyl points studied here appear at a magnetic field that is realistic
to observe in experiments. Further studies, in particular to obtain a realistic g-
factor and more reliable data for the direct band gap, are required to accurately
estimate the required magnetic field. Furthermore, it is known that modeling a
strong magnetic field with only Zeeman splitting is not sufficient, and a more ac-
curate model should be considered. Finally, the effect of these Weyl points on the
magnetoresistance should be calculated. This is influenced by the orientation of
the type-II Weyl points, and their distance from the Fermi level.

Consequently, there are three open questions which require further investiga-
tion: First, whether the appearance of field-induced Weyl points is realistic in these
AB2 compounds. Second, if these Weyl points do appear, whether they alone are
responsible for the experimentally observed behavior of magneto-resistance or if
there are other effects. Finally, whether there are other compounds which contain
the same kind of field-induced Weyl points, possibly appearing already at weaker
magnetic field.
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7
General Form of Symmetric k.p
Models

In the previous chapter, we utilized a k·p model to locally describe the Hamiltonian
for TaAs2. An important point in this construction is that the k · p Hamiltonian
must be restricted to terms which are allowed by symmetries. Usually, the general
form of such a symmetric k ·p Hamiltonian is calculated by hand. In this chapter,
we describe how this process can be automated using a computer algebra system
and present open-source implementation of the algorithm, the kdotp-symmetry
code.

7.1 Symmetry-Constrained Hamiltonian

For a general Hamiltonian H(k), the constraint imposed by a symmetry operation
g is given by [113]

H(k) = D(g)H(g−1k)D(g−1), (7.1)

where D(g) is the symmetry representation. Consequently, a Hamiltonian that
respects a given symmetry group G must observe eq. (7.1) for all symmetries1 g
in G.

In the following, we will reformulate this condition in terms of linear operations
on the space of possible Hamiltonian matrices. This allows for implementing an
automated system to generate the set of allowed matrices.

1Note that it is a sufficient condition to observe eq. (7.1) for a generating subset of G.
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7.1 Symmetry-Constrained Hamiltonian

First, we will consider the action of the symmetry (eq. (7.1)) on the k - vector.
We will limit the discussion to some finite set of basis functions, for example
monomials of {kx, ky, kz} up to second order. Let V ⊂ F(R3,R) be the vector
space which contains these functions of k. We define

F̂g : V −→ V (7.2)
f 7−→ f̃g

f̃g(k) = f(g−1k),

which is a linear operator on V that captures the action of the symmetry on
functions of k. We require that the choice of basis functions V is closed under F̂g

for all symmetry operations. That is,

∀g ∈ G, f ∈ V : F̂g(f) ∈ V. (7.3)

Second, let us consider the space of hermitian N ×N matrices, which we will
denote W . Again, we define a linear operator which captures the action of a
symmetry as given in eq. (7.1):

Ĝg : W −→W (7.4)
A 7−→ D(g)AD(g−1).

This operator is unitary under the Frobenius inner product, which is defined as

⟨A,B⟩F = tr
(
A†B

)
. (7.5)

Since the Hamiltonian is a hermitian matrix, with k - dependence as given by
V , it can be expressed as a vector in V ⊗W . Using this notation, the symmetry
constraint eq. (7.1) can be written as

∀g ∈ G :
(
F̂g ⊗ Ĝg

)
(H) = H, (7.6)

and thus
H ∈

∩
g∈G

Eig
(
F̂g ⊗ Ĝg, 1

)
. (7.7)

In conclusion, the problem of finding the general form of the Hamiltonian which re-
spects the symmetry group G is equivalent to calculating this subspace. In the next
section, we will detail how this calculation is implemented in the kdotp-symmetry
code.

The space of valid Hamiltonian matrices (eq. (7.7)) is calculated as follows:
As a first step, the matrix form of the two linear operators F̂g (eq. (7.2)) and Ĝg

(eq. (7.6)) is calculated. These describe the action of the symmetry on functions of

68



General Form of Symmetric k.p Models

k and hermitian matrices, respectively. The matrix form is then used to compute
the cross product which describes the full symmetry operation on the Hamiltonian,
and the invariant space Eig

(
F̂g ⊗ Ĝg

)
is calculated. This procedure is repeated

for all symmetry operations g in a generating set of the full symmetry group G.
Finally, the intersection of the invariant subspaces for all symmetry operations is
computed to give the final result. In this section, the implementation of each of
these steps in the kdotp-symmetry code is described in detail.

The code is a library written in the Python [114] programming language.
Most notably, it uses the sympy [115] package for symbolic computations. The
numpy [116] and scipy [110] packages are also used, for numerical calculations.

7.1.1 Calculaধng the Matrix Form of F̂g

The operator F̂g acts on the space of real-valued functions of k. In kdotp-symmetry,
a set of basis vectors, which are sympy expressions of kx, ky and kz, must be given
to define this vector space V . The action of the symmetry g on this space is defined
by the real-space rotation matrix Sg. For unitary symmetry operations, the k -
space matrix Rg is related to Sg by2

Rg =
(
ST
g

)−1
. (7.8)

In the anti-unitary case, this relation reads

Rg = −
(
ST
g

)−1
. (7.9)

Consequently, the expression g−1k evaluates to ST
g k and −ST

g k for the unitary and
anti-unitary cases, respectively. By simultaneously substituting

ki 7−→
(
g−1k

)
i
= ± (Sgk)i , (7.10)

for i ∈ {x, y, z}, the operation F̂g can be applied on the basis vectors {v1, ...vn}.
This is done using the subs method of sympy expressions.

The final step to obtain the matrix form of the operator F̂g is to express these
transformed basis vectors {F̂gv1, ..., F̂gvn} in terms of the original basis. This
means solving the for the coefficients λi in

F̂gvi = λi1v1 + ...+ λinvn. (7.11)

Algebraically solving this equation is a challenging task, especially if complicated
functions vi are involved. The following procedure however has shown to work well

2Note that Rg and Sg are not necessarily unitary, since the coordinates can be given w.r.t. a
non-orthogonal basis.
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7.1 Symmetry-Constrained Hamiltonian

in practice: Equation (7.11) is evaluated (algebraically) for a set of random values
of k. Assuming that the initial basis vectors were indeed linearly independent, this
will produce a system of linear equations that can be exactly solved for λij. To
ensure that the result is not accidental, which might happen if the vj are linearly
dependent, or F̂gvi is not in the space spanned by {vj}j, eq. (7.11) is then verified
using the obtained values for λij.

Repeating this procedure for all transformed basis vectors F̂gvi, the matrix
form of F̂g can be obtained as

M(F̂g) =

λ
1
1 · · · λn1
... . . . ...
λ1n · · · λnn

 . (7.12)

7.1.2 Calculaধng the Matrix Form of Ĝg

The general procedure for calculating the matrix form of Ĝg is the same as for F̂g.
First the transformed basis vectors Ĝgwi are calculated, where {w1, ..., wm} is the
basis of W . This is simply a matter of applying eq. (7.6), with the given symmetry
representation D(g):

Ĝgwi = D(g)wiD(g)−1 (7.13)
Second, the transformed basis vectors need to be expressed in terms of the original
basis

Ĝgwi = µi
1w1 + ...+ µi

mwm. (7.14)
We require that the basis {wi}i of W is orthogonal with respect to the Frobenius
inner product. The coefficients µi

j can then be simply computed as

µi
j =

⟨Ĝgwi, wj⟩F
⟨wj, wj⟩F

. (7.15)

The matrix form is then given as

M(Ĝg) =

µ
1
1 · · · µn

1
... . . . ...
µ1
n · · · µn

n

 . (7.16)

7.1.3 Calculaধng the Invariant Subspace of the Symmetry Group

Given the matrix forms of both F̂g and Ĝg, the total action of the symmetry on
the Hamiltonian can be calculated as M(F̂g)⊗M(Ĝg). The space of Hamiltonians
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General Form of Symmetric k.p Models

which are invariant under g can then be calculated as the nullspace of

M(F̂g)⊗M(Ĝg)− In·m×n·m, (7.17)

using the nullspace method of sympy matrices. To validate this result, the di-
mension of the nullspace is compared against the number of eigenvalues close to
zero calculated numerically using numpy and scipy.

Finally, the intersection of the invariant spaces for each symmetry operation g
must be calculated. This is done using the Zassenhaus algorithm [117], which is
implemented using sympy’s method of generating the reduced row echelon form,
sympy.Matrix.rref.

7.1.4 Limitaধons
The current implementation of the kdotp-symmetry code is limited to symmorphic
symmetry groups (see section 2.1). However, it should be possible to implement
the non-symmorphic case without substantial changes to the architecture of the
code.

7.2 Example Applicaধon
An example application of the kdotp-symmetry code is the k · p model for TaAs2
used in section 6.1.3. In this section, we provide some additional details of how
the basis for this model is computed.

As a basis of the space of hermitian 4× 4 matrices, we use the tensor products
of Pauli matrices:

BW = {σi ⊗ σj|i, j ∈ {0, x, y, z}} (7.18)

Because the symmetry operators cannot change the order of a function of k, we
can consider only the subspace of V of a given order n, and use the monomial basis

BV n = {kixkjyklz|i, j, l ∈ N0; i+ j + l = n}. (7.19)

This separation into subspaces significantly reduces the computational complexity
of the task, since the basis size of the full space V ⊗W is reduced.

Since only a generating subset of the full symmetry group is required to pro-
duce the correct Hamiltonian form, we choose the C2y, parity, and time-reversal
symmetries, as given in eq. (6.3). Their corresponding representation matrices are
given in eq. (6.4). Using these symmetries with the given bases for W and V , the
kdotp-symmetry code produces the following basis for the Hamiltonian matrix, up
to second order:
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7.3 Conclusion

• Zeroth order:
σ0 ⊗ σ0, σz ⊗ σ0 (7.20)

• First order:

(kx − ky)σx ⊗ σx, (kx − ky)σx ⊗ σy, (kx + ky)σx ⊗ σz, (7.21)
(kx + ky)σy ⊗ σz, kzσx ⊗ σx, kzσx ⊗ σy

• Second order:

(k2x + k2y)σ0 ⊗ σ0, (k
2
x + k2y)σz ⊗ σ0, kxkyσ0 ⊗ σ0, kxkyσz ⊗ σ0, (7.22)

(kxkz − kykz)σ0 ⊗ σ0, (kxkz − kykz)σz ⊗ σ0, k
2
zσ0 ⊗ σ0, k

2
zσz ⊗ σ0

This is exactly the basis used in section 6.1.3, up to some relabeling.

7.3 Conclusion
In this chapter, we have presented kdotp-symmetry, a tool for computing the
general form of a Hamiltonian matrix for k · p models under a given symmetry
group. Since the calculation of such models by hand is cumbersome and error-
prone, this should be a useful tool to simplify such calculations. The automation
of the process is made possible by reformulating the problem as a linear algebra
problem, which can then be solved using a computer algebra system.
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8
Automated Construcধon of Wannier
Tight-binding Models

This chapter was previously published in reference [155].
A significant part of materials science is devoted to the problem of finding

the electronic structure of a given material. As a result, numerous computational
techniques have been developed to study this problem. These techniques can
roughly be classified into two kinds: First-principles methods solve the problem
using the fundamental physical principles and properties of atoms comprising the
material. For weakly-interacting systems, density functional theory (DFT) [14] is
the dominant (mean field) technique for solving the electronic structure problem
from first principles.

In contrast, empirical methods aim to capture the relevant physical properties
using a simplified model. Such models are usually matched to known properties
of the material, which can be obtained from either experiments or first-principles
calculations. An example of such an empirical method is given by the tight-binding
approximation, which describes a material as a set of localized orbitals and pre-
defined electron hopping terms between them. While the first-principles methods
typically have superior accuracy, empirical methods are often used due to their
lower computational cost. In particular, calculations of complex device geometries
are often inaccessible to a direct first-principles study. As such, the construction
of reliable empirical models is of significant importance. And the technique of
creating Wannier tight-binding models [51, 118] from first-principles calculations
is arguably one of the most popular tools in nowadays computational materials
science. The use of Wannier tight-binding models allows one to combine the sim-
plicity of empirical methods with the correct wave function properties obtained
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from first-principles.

In recent years, high-throughput techniques made a profound impact in various
fields of materials science [119–122]. While the domain eludes a strict definition,
a common feature of such techniques is that computational tools are applied to
a wide range of candidate materials, or variations of a given material, in search
of some beneficial property. Existing codes and techniques are combined and
applied on a scale that was not previously possible. A range of automated frame-
works [123, 124] support this by facilitating the combination of separate calcula-
tions into logical workflows. The challenge in designing such a high-throughput
workflow is to make it resilient to varying input parameters. Since the number of
calculations performed is too large to be human-controlled, many decisions – for
example which calculation to perform based on the output of a previous calculation
– need to be encoded into the automated workflow.

In this chapter, we introduce steps for addressing two standardly known prob-
lems of using Wannier90 [111, 112] in combination with any ab initio software to
construct tight-binding models: the absence of symmetries present in the original
compound in the obtained tight-binding model, and the neccessity to search for
optimal inner and outer energy windows for projection of the first-principles en-
ergy bands. We do not, however, treat the issue of selecting the initial projections
used by Wannier90. As such, we create automated workflows which are applicable
to large classes of materials with similar orbital character of the bands of interest.
However, these workflows are not yet applicable to high-throughput scenarios in
the sense that they can trivially be applied to arbitrary compounds. Nevertheless,
the presented workflows are written in a way that they could be combined with
efforts to address the problem of selecting initial projections [125].

In section 8.1, we review the general process of calculating the Wannier tight-
binding models by means of Wannier90 and explain the proposed and implemented
symmetrization and automatic energy window choice procedures. Sec. 8.2 de-
scribes how these procedures are used for the development of an automated work-
flow using the AiiDA [123] framework. While this workflow automates the tight-
binding calculation itself, there are still some tunable parameters which might
be eliminated by a more sophisticated system. By using a modular design ap-
proach, we provide an extensible framework for implementing such improvements.
In the final section, we illustrate the application of this workflow to calculate tight-
binding models for strained III-V semiconductor materials. These are useful in the
pursuit of Majorana devices [126–128], enabling the study of transport properties
for different topological devices with III-V semiconductor quantum wells, where
strains play an important role in the topological transition.
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Automated Construction of Wannier Tight-binding Models

8.1 Construcধon of Wannier Tight-binding Models

In this section, we describe the process of generating symmetrized Wannier-like
tight-binding (SWTB) models. First, we give a short description of the method as
introduced in the works of Refs. [51, 118] and implemented in Wannier90 [111, 112]
software package. Next, we describe a method for symmetrizing these WTBs in a
post-processing step. Finally, we describe a scheme to enhance the band-structure
accuracy by optimizing the energy windows used by Wannier90.

8.1.1 Wannier Tight-binding Construcধon
Tight-binding models represent a common way to describe crystalline systems in
a computationally cheap way. The material is described as a system of localized
orbitals with positions ti in the unit cell, and hopping terms H ij[R] between the
j-th orbital in the unit cell at location R and the i-th orbital in the home unit cell
R = 0. From these parameters, the matrix Hamiltonian can be written as 1

Hij(k) =
∑

R
H ij[R]eik.(R+tj−ti). (8.1)

For the case of spinful systems, we choose the indices i, j to include the spin index
for simplicity.

The Wannier tight-binding (WTB) method utilizes localized Wannier functions
as basis orbitals to capture the compound’s physics. These basis Wannier functions
are obtained from first-principles simulations. This procedure is based on the
work of Refs. [51, 118] and implemented in the Wannier90 [111, 112] code. After
obtaining the necessary Wannier90 input files from a first-principles calculation,
two steps are performed to construct these Wannier functions:

In a first step, the Bloch wave-functions |ψn,k⟩ calculated by the first-principles
code are disentangled to obtain M wave-functions, where M is the target number
of basis Wannier functions in WTB. For selecting the Bloch wave-functions which
are involved in this procedure, one needs to choose an outer energy window. Op-
tionally, an inner energy window can be chosen. States inside this inner window
will be preserved by the disentanglement. An optimization routine is performed to
select the M states such that the “change of character” ΩI (defined in Ref. [118])
is minimized. As an initial guess for this optimization procedure, M localized trial
orbitals |gm⟩ are used. Because the disentanglement procedure needs to discard
some states, it usually changes both the symmetry and the energy bands of the
model in comparison with first-principles results. Consequently, choosing good

1In this work, we use the tight-binding convention I of Ref. [35].
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8.1 Construction of Wannier Tight-binding Models

values for both the energy windows and the trial orbitals has a strong effect on
the quality of the resulting model.

As a second (optional) step, another optimization is performed to find a uni-
tary transformation such that the resulting Wannier functions are maximally lo-
calized [51]. Again, the trial orbitals |gm⟩ are used to create an initial guess for
this optimization. Typically, these orbitals are chosen to be those chemical atomic
orbitals that contribute most to the bands of interest. A method for constructing
Wannier orbitals without the need for such a guess is described in Ref. [125].

8.1.2 Symmetrizaধon
An important feature of tight-binding models, especially for studying topological
effects, is that they preserve certain crystal symmetries. For a given symmetry
group G, the symmetry constraint on the Hamiltonian matrix is given by [113]

∀g ∈ G : H(k) = Dk(g)H(g−1k)Dk(g−1), (8.2)

where Dk(g) is the k-dependent representation of the symmetry g from the group
G. We define the k - independent part D(g) of the representation as

Dk(g) = eiαg .kD(g), (8.3)

where αg is the translation vector of the symmetry. In the following, we will
assume that the representation matrix of unitary operations is given by

Dk(g) = eiαg .kD(g) = eiαg .kUg, (8.4)

where αg is the translation vector and Ug is a unitary matrix. For anti-unitary
operations, we assume they are of the form

Dk(g) = eiαg .kD(g) = eiαg .kUgK̂, (8.5)

where K̂ represents complex conjugation. A convenient property of the represen-
tation matrices is that

Dk(g)ADk(g−1) = D(g)AD(g−1) (8.6)

for any matrix A. In the unitary case, this is shown by

Dk(g)ADk(g−1) = eiαg .kUgA
(
eiαg .kUg

)−1 (8.7)
= eiαg .kUgAU

†
ge

−iαg .k = UgAU
†
g = D(g)AD(g−1), (8.8)

and in the anti-unitary case by

Dk(g)ADk(g−1) = eiαg .kUgK̂A
(
eiαg .kUgK̂

)−1

(8.9)

= eiαg .kUgK̂AK̂U
†
ge

−iαg .k = UgK̂AK̂U
†
g = D(g)AD(g−1). (8.10)
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Symmetrized Hamiltonian as Group Average

For a Hamiltonian which does not fulfill these symmetry constraints, we define the
symmetrized Hamiltonian as the group average

H̃(k) = 1

|G|
∑
g∈G

Dk(g)H(g−1k)Dk(g−1). (8.11)

Following eq. (8.6), we can equivalently write the symmetrized Hamiltonian as

H̃(k) = 1

|G|
∑
g∈G

D(g)H(g−1k)D(g−1). (8.12)

This procedure projects the Hamiltonian onto the symmetric subspace, mean-
ing that the modified Hamiltonian respects eq. (8.2):

Dk(g′)H̃([g′]−1k)Dk([g′]−1) =
eq. (8.6)

D(g′)H̃([g′]−1k)D([g′]−1) (8.13)

=
1

|G|
∑
g∈G

D(g′)D(g)H(g−1[g′]−1k)D(g−1)D([g′]−1)

=
1

|G|
∑
g∈G

D(g′g)H([g′g]−1k)D([g′g]−1)

=
g′′=g′g

1

|G|
∑
g′′∈G

D(g′′)H([g′′]−1k)D([g′′]−1) = H̃(k)

Furthermore, if the original Hamiltonian is already symmetric, the original and
symmetrized Hamiltonians are identical.

H̃symm.(k) = 1

|G|
∑
g∈G

D(g)Hsymm.(g−1k)D(g−1) (8.14)

=
eq. (7.1)

1

|G|
∑
g∈G

Hsymm.(k) = Hsymm.(k)

Since this construction does not explicitly construct the corresponding Wannier
functions, we term these models symmetrized Wannier-like tight-binding models
(SWTB).

It is important to note that the eigenstates and eigenvalues of the symmetrized
Hamiltonian may differ significantly from those of the non-symmetrized Hamilto-
nian. In fact, for an anti-symmetric initial Hamiltonian, meaning that

Dk(g)H(g−1k)Dk(g−1) = −H(k) (8.15)
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for some symmetry g, the symmetrized result vanishes completely. However, given
a Hamiltonian which almost respects the symmetry, this technique can effectively
eliminate small symmetry-breaking terms.

In the context of tight-binding models, this symmetrization technique can only
straightforwardly be applied when the underlying basis set is symmetric. If the
tight-binding basis contains an orbital |α⟩ centered around the position r, it must
also contain g |α⟩ centered around gr for all symmetries g ∈ G. For example, if the
model for a material which has Cx

4 symmetry contains a px orbital at the origin,
it must also contain a py orbital at the origin.

For Wannier tight-binding models, this means that the technique can generally
only be applied when the step of maximally localizing the Wannier functions is
omitted, and pre-defined atomic orbitals are used. When this condition is met
however, the method can be applied for both unitary and anti-unitary symmetries,
as well as non-symmorphic symmetry groups.

Hopping Matrices of the Symmetrized Hamiltonian

To apply the group average to tight-binding models, it is convenient to rewrite
Eq. 8.11 directly in terms of the hopping matrices H[R]. To obtain these, we first
notice that Dil(g) ̸= 0 only if gtl−ti ∈ Zd, meaning that orbitals centered at tl are
mapped onto ti, up to a possible lattice translation. Using eqs. (8.1) and (8.12),
we can write the symmetrized Hamiltonian as

H̃ij(k) = 1

|G|
∑
g∈G
l,m
R

Dil(g)H
lm[R]ei(g

−1k).(R+tm−tl)Dmj(g
−1), (8.16)

where the indices l,m only go over non-zero Dil(g) and Dmj(g
−1). Writing the

real-space operator for g in Seitz notation [129]

gr = {Sg|αg} , g−1
r =

{
S−1
g

∣∣−S−1
g αg

}
, (8.17)

where Sg is the rotational part, and αg is the translation vector of the symmetry,
this means that

gtl − ti = Sgtl +αg − ti ∈ Zd (8.18)
g−1tj − tm = S−1

g tj − S−1
g αg − tm ∈ Zd ⇒ tj −αg − Sgtm ∈ Zd (8.19)

⇒
−(8.18)−(8.19)

Tml
ij = Sg(tm − tl)− (tj − ti) ∈ Zd. (8.20)

Next, we must consider how g acts on the reciprocal-space vector k. For an (anti-)
unitary operator, we know that

⟨k, r⟩ = ±⟨gk, gr⟩, (8.21)
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where the positive (negative) sign corresponds to the unitary (anti-unitary) case.
Since g acts on r with Sg, it follows that

⟨k, r⟩ = ±⟨Ak, Sgr⟩ (8.22)
kT r = ±kTATSgr,

where A is the operation which acts upon k when g is applied. Since this is true
for all k and r,

A = ±(ST
g )

−1, (8.23)
and thus

g−1k = ±ST
g k. (8.24)

For the next step, we treat the unitary and anti-unitary cases separately for clarity.

1. Unitary case
By applying eq. (8.24) to eq. (8.16), we get

H̃ij(k) = 1

|G|
∑
g∈G
l,m
R

Dil(g)H
lm[R]ei(S

T
g k).(R+tm−tl)Dmj(g

−1) (8.25)

=
1

|G|
∑
g∈G
l,m
R

Dil(g)H
lm[R]eik.[Sg(R+tm−tl)]Dmj(g

−1).

Applying eq. (8.4), we obtain

H̃ij(k) = 1

|G|
∑
g∈G
l,m
R

(Ug)ilH
lm[R]eik.[Sg(R+tm−tl)]

(
U †
g

)
mj

(8.26)

=
1

|G|
∑
g∈G
l,m
R

Dil(g)H
lm[R]Dmj(g

−1)eik.[Sg(R+tm−tl)].
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2. Anti-unitary case
In the anti-unitary case, we get

H̃ij(k) = 1

|G|
∑
g∈G
l,m
R

Dil(g)H
lm[R]ei(−ST

g k).(R+tm−tl)Dmj(g
−1) (8.27)

=
1

|G|
∑
g∈G
l,m
R

Dil(g)H
lm[R]e−ik.[Sg(R+tm−tl)]Dmj(g

−1).

Applying eq. (8.5) to eq. (8.27), we get

H̃ij(k) = 1

|G|
∑
g∈G
l,m
R

(Ug)il K̂H
lm[R]eik.[−Sg(R+tm−tl)]K̂

(
U †
g

)
mj

(8.28)

=
1

|G|
∑
g∈G
l,m
R

(Ug)il K̂H
lm[R]K̂

(
U †
g

)
mj
eik.[Sg(R+tm−tl)]

=
1

|G|
∑
g∈G
l,m
R

Dil(g)H
lm[R]Dmj(g

−1)eik.[Sg(R+tm−tl)].

We observe that the result is the same for the unitary and anti-unitary cases,
and treat them together in the following. Next, we substitute tm − tl using Tml

ij

defined above, and define R′ = SgR + Tml
ij . Since R′ is again a lattice vector, we

can change the summation from R to R′:

H̃ij(k) = 1

|G|
∑
g∈G
l,m
R

Dil(g)H
lm[R]Dmj(g

−1)eik.[SgR+Tml
ij +tj−ti] (8.29)

=
1

|G|
∑
g∈G
l,m
R′

Dil(g)H
lm[S−1

g (R′ − Tml
ij )]Dmj(g

−1)eik.(R
′+tj−ti). (8.30)

Finally, we again use eq. (8.1) to obtain the symmetrized real-space hopping ma-
trices

H̃ ij[R′] =
1

|G|
∑
g∈G
l,m

Dil(g)H
lm[S−1

g (R′ − Tml
ij )]Dmj(g

−1). (8.31)
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Figure 8.1: Comparison of the initial (blue) and symmetrized (orange) band struc-
ture for a tight-binding model of silicon with atom-centered sp3 orbitals. (a) In
the eV scale, there are no visible differences between the two models. (b) A zoom
in around the X point on the meV scale reveals a slight lifting of the band de-
generacies in the initial model. This incorrectness is resolved in the symmetrized
model. For comparison, a symmetrized band structure taking into account only
symmorphic symmetries (green) is also shown.

Example Results

Fig. 8.1 shows the results of this symmetrization procedure on a tight-binding
model for bulk silicon, in the diamond cubic crystal structure, with atom-centered
sp3 orbitals. The initial model already approximately fulfills the symmetry condi-
tion, which is reflected in the fact that the band structure does not change in the
electronvolt scale. However, at the sub-millielectronvolt scale the band degenera-
cies are lifted in the original model, but restored after the symmetrization proce-
dure. Since the symmetry group of the diamond cubic structure Fd3̄m (no. 227)
is non-symmorphic, this example demonstrates that the symmetrization technique
is capable also of enforcing such symmetries. In panel b of fig. 8.1, we compare the
symmetrization using the full symmetry group to a partial symmetrization enforc-
ing only the symmorphic subgroup. Adding non-symmorphic symmetries enforces
the four-fold degeneracy at the X point and two-fold degeneracy on the X−U line,
whereas symmorphic symmetries only enforce a two-fold degeneracy on the Γ−X
line.
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Construcধon of Matrix Representaধons

To determine the matrix representations D(g), we use the fact that Wannier90
allows one to manually choose the trial orbitals |gm⟩. As a result, the basis after
the disentanglement procedure corresponds to the chosen orbitals, up to some
numerical error. Since the behavior of the basis orbitals under symmetries is
known, D(g) can be determined in this way. For the treatment of spin, we use
the rotation matrices as given in ref. [130]. The action of time-reversal on the
spin basis {|↑⟩ , |↓⟩} is given by σyK̂, where K̂ represents complex conjugation.
An automated method for generating the representation matrices for given atomic
orbitals is available in the symmetry-representation package. Importantly, we
used Wannier90 without performing the maximal localization step. It is the case in
the illustrated application of Sec. 8.3, where this allows us to preserve the orbital
basis. Alternatively, one could use the basis transformation matrices U (k) provided
by Wannier90 [111] to transform D(g) into the maximally-localized basis. While
this approach produces computationally cheaper localized models, the drawback
is that the basis is different for each produced tight-binding model. As a result,
comparing models is more difficult. Also, linear interpolation between models, as
described in section 8.3.3, would require a change of basis.

Alternaধve Methods

Another approach to obtaining symmetric tight-binding models is to use the site-
symmetry mode implemented in Wannier90 [131]. However, this method is limited
to symmetries which leave a given real-space coordinate invariant (site symme-
tries), and does not include time-reversal. The method presented here has no such
limitation, but is instead limited to models which have a symmetric set of basis
functions as described above. The site-symmetry mode also relies on obtaining
the symmetry information from the first-principles code, which is currently imple-
mented only for Quantum Espresso [31, 32]. The workflow described in Sec. 8.2
could be adapted to allow using this approach with only minimal changes.

8.1.3 Opধmizaধon for Band Structure Fit
As described above, an important parameter in running Wannier90 is the choice
of the so-called energy windows [111]. There are two such windows: The outer
window determines which states are taken into account for the disentanglement
procedure. At every k-point, it must contain at least M bands, where M is
the desired number of bands in the tight-binding model. The inner (or frozen)
window on the other hand determines which states should not be modified during
disentanglement. It can contain at most M bands at any given k.
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Since the quality of the resulting tight-binding model depends sensitively on the
choice of energy windows, a strategy for reliably choosing good windows is required.
A straightforward way of achieving this is by iteratively optimizing the window
values. Having constructed and symmetrized a tight-binding model, its quality can
be determined by comparing its band structure to a reference computed directly
from first-principles 2. As a measure of their mismatch, we choose the average
difference between the energy eigenvalues

∆ =
1

M

1

Nk

M∑
i=1

∑
k

∣∣εDFT
i,k − εTB

i,k
∣∣ . (8.32)

Some values of the energy windows cannot produce a tight-binding model, for
example if the outer window contains less than M bands. As a result, finding
appropriate energy windows is a constrained, four-dimensional optimization prob-
lem. The Nelder-Mead (downhill simplex) algorithm [132] can be used to solve
this problem 3.

Fig. 8.2 shows the result of such an optimization procedure, for unstrained
InSb as described in section 8.3. A clear improvement is visible between the tight-
binding model obtained with the initial windows chosen by hand (panel a), and
the optimized window values (panel b). In particular, the conduction bands at the
X and Z points are represented more accurately in the optimized model. Since
the given bands for InSb are not entangled, it is also possible to skip the disentan-
glement step completely by using the exclude_bands parameter of Wannier90 to
ignore all other energy bands. The resulting band structure is shown in fig. 8.2(c).
Nevertheless, we find that the band structure using optimized disentanglement is
slightly better (∆ = 0.0327) than the one without disentanglement (∆ = 0.0375),
especially for the four lowest conduction bands on the Z - Γ - X line. Hence, it can
be useful to apply the disentanglement procedure and energy window optimization
even in cases where the bands are not inherently entangled, especially when the
time required to run the tight-binding calculation is short compared to the initial
first-principles calculation.

8.2 Implementaধon in AiiDA Workflows
The AiiDA [123] platform is a Python [114] framework for performing high-throughput
calculations, focused on the field of materials physics. It enables reproducible re-
search by keeping track of inputs, outputs and settings for each calculation. On top

2Because the first-principles calculation usually contains more than M bands, we need to
choose which bands should be represented by the tight-binding model.

3The constraint is implemented by assigning an infinite value of ∆ to invalid energy windows.
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Figure 8.2: Comparison between the reference first-principles band structure (blue)
and band structures calculated from tight-binding models (orange) for InSb. The
tight-binding model in (a) was calculated with the initial energy window, whereas
(b) shows the model using the optimized energy window as detailed in table 8.2.
The model in (c) was calculated without the disentanglement procedure, using the
exclude_bands parameter of Wannier90.

of this so-called provenance layer, it provides a toolset for automatically chaining
calculations into user-defined workflows.

In this section, we describe the implementation of the Wannier tight-binding
extraction scheme as an AiiDA workflow. This automation enables the high-
throughput application to the study of strain effects (described in section 8.3).
Special care has been taken to design the workflow in a modular way, which en-
ables re-using parts of the workflow for purposes other than tight-binding extrac-
tion. We first discuss these design principles, before showing how they are applied
in the tight-binding workflows.

The code for the AiiDA workflows is available in the open-source aiida-tbex-
traction package.

8.2.1 Modular Workflow Design
The basic principle of modular workflow design is to split up a single monolithic
workflow into minimal sub-workflows or calculations that perform exactly one task.
For example, the tight-binding model created by Wannier90 is post-processed by
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parsing it to an HDF5 format, followed by optionally changing the order of the basis
and symmetrizing the model. While this could easily be implemented in a single
script, splitting these three steps up into separate calculations allows separately
re-using each of the steps.

More complex workflows are created by combining multiple sub-workflows into
a logical unit at a higher abstraction level. Inputs to the sub-workflow are either
forwarded directly from the input to the parent workflow or created within the
parent workflow. Similarly, outputs from the sub-workflow can either be forwarded
to be an output of the parent workflow or consumed directly to guide the further
execution of the parent workflow.

Since a complex workflow can consist of multiple layers of wrapped sub-workflows,
this modular approach is maintainable only if the overhead of forwarding input
and output is minimal. Following the single responsibility principle, a parent work-
flow should not have to change if an input or output parameter of a sub-workflow
changes, unless it directly interacts with this parameter. To achieve this, a syntax
is needed to specify that a parent workflow will inherit inputs or outputs of a
sub-workflow, without explicitly listing each parameter. In AiiDA, such a feature
is available in the newly-introduced expose functionality. It allows implicitly for-
warding input and output values of a sub-workflow instead of having to explicitly
specify each value. Listing 8.1 shows a simple workflow with two inputs a and b,
and one output c. A parent workflow that only wraps this workflow is shown in
listings 8.2 and 8.3 with and without using the expose functionality, respectively.
Import statements are omitted in all listings for brevity.

1 class SubWF(WorkChain):
2 @classmethod
3 def define(cls, spec):
4 spec.input('a', valid_type=Int)
5 spec.input('b', valid_type=Int)
6 spec.output('c', valid_type=Int)
7 ...

Listing 8.1: A simple workflow with inputs a and b, and output c. The steps
executing the workflow are omitted.

1 class ParentWF(WorkChain):
2 @classmethod
3 def define(cls, spec):
4 spec.expose_inputs(SubWF)
5 spec.expose_outputs(SubWF)
6

7 spec.outline(cls.invoke_subwf , cls.write_outputs)
8

9
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10 def invoke_subwf(self):
11 return ToContext(
12 sub_wf=self.submit(SubWF, **self.exposed_inputs(SubWF))
13 )
14

15 def write_outputs(self):
16 self.out_many(self.exposed_outputs(self.ctx.sub_wf))

Listing 8.2: A workflow that wraps SubWF by using the expose functionality.

1 class ParentWF(WorkChain):
2 @classmethod
3 def define(cls, spec):
4 spec.input('a', valid_type=Int)
5 spec.input('b', valid_type=Int)
6 spec.output('c', valid_type=Int)
7

8 spec.outline(cls.invoke_subwf , cls.write_outputs)
9

10 def invoke_subwf(self):
11 return ToContext(
12 sub_wf=self.submit(
13 SubWF,
14 a=self.inputs.a,
15 b=self.inputs.b
16 )
17 )
18

19 def write_outputs(self):
20 self.out('c', self.ctx.sub_wf.out.c)

Listing 8.3: A workflow that wraps SubWF without using the expose functionality.

The modular architecture improves not only the re-usability, but also the flex-
ibility of workflows. Often, a given part of a workflow could be performed in
different ways. For example, many different codes can perform the first-principles
calculations in the tight-binding extraction workflows. Additionally, one might
want to add steps such as relaxation or cut-off energy convergence.

To allow for this, the parent workflow can allow for dynamically selecting a
workflow for performing a given task by passing it as an input 4. An abstract
workflow class defines the interface that a workflow must fulfill so that it can be
used to perform the task. If needed, the parent workflow can allow for dynamic
inputs, which are just forwarded to the specific workflow implementing the in-

4For storing the workflow in the AiiDA database, it needs to be converted into an AiiDA data
type. We chose to convert it into a string containing the fully qualified class name, from which
we import the workflow when needed.
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Figure 8.3: Schematic of the AiiDA workflow for creating tight-binding models
with energy window optimization. Workflows are shown in blue, and calculations in
purple. Orange arrows show calls from parent- to child-workflows (or calculations).
Dashed green arrows show the implicit data dependency between workflows of the
same level. In calculation names, the suffix Calculation is omitted for brevity.

terface. In this way, the parent workflow can act as a template that defines an
abstract series of steps, without knowledge of the detailed input flags available on
each step.

8.2.2 Tight-binding Extracধon Workflow
Having discussed the design principles for modular workflows, we now show how
these are applied to create a workflow for the construction of tight-binding models.
This workflow is implemented in the OptimizeFirstPrinciplesTightBinding
class as sketched in fig. 8.3. At the uppermost level, the workflow has two parts:
FirstPrinciplesRunBase, which executes the first-principles calculations, and
WindowSearch which calculates the tight-binding model with energy window op-
timization.

Since different first-principles codes can produce the input files required by
Wannier90, FirstPrinciplesRunBase defines only the minimum interface needed
to perform this task. As described in the previous section, a workflow that imple-
ments this interface for a specific first-principles code can then be chosen dynami-
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cally. As a result, the subsequent parts of the workflow are independent of which
first-principles code is used.

The WindowSearch workflow performs the Nelder-Mead algorithm [132] for
finding the optimal energy window. Because optimization schemes are useful out-
side of this specific application, we implemented the Nelder-Mead method in a
general way. The OptimizationWorkChain, defined in the aiida-optimize mod-
ule, can be used to solve generic optimization problems in the context of AiiDA
workflows. It requires two inputs: A workflow which defines the function to be op-
timized, and an engine that implements the optimization method. Consequently,
changing the whole workflow to use a different optimization method would be a
simple matter of using a different engine.

Because AiiDA workflows need to be able to stop and re-start after any given
step, the engine is written in an object-oriented instead of a procedural way. While
this complicates implementing the Nelder-Mead method, it allows for serializing
and storing the state of the engine.

The function which is optimized by the OptimizationWorkChain is imple-
mented in the RunWindow workflow. It again consists of two parts: TightBinding-
Calculation creates the tight-binding model itself, and ModelEvaluationBase
evaluates the quality of the model. The first step in the TightBindingCalculation
workflow is to run Wannier90 on the given input parameters. In a second step, the
Wannier90 output is parsed and converted into the TBmodels [36] HDF5 format. A
third, optional, “slicing” step is used to either permute the basis orbitals or discard
some orbitals. Finally, the (also optional) symmetrization procedure is performed.
Both the Slice and the Symmetrize calculation have a TBmodels HDF5 file as
both input and output, meaning that they could be chained arbitrarily with other
such post-processing steps.

For the evaluation of the tight-binding model, we again use an abstract interface
class, ModelEvaluationBase. While for the purposes of this thesis we used the
average difference of band energies (eq. (8.32)) as a measure of model quality, other
quantities might be more appropriate for different applications.

8.3 Strain-dependent Tight-binding Models for Majo-
rana Devices

The quest for Majorana zero modes (MZMs) in condensed matter systems has
recently attracted a lot of interest [126–128, 133–137]. The non-abelian exchange
statistics of Majorana Fermions makes these zero modes promising candidates for
the realization of topological quantum computation devices [126, 138]. Experimen-
tal investigations of possible MZMs focus on the proposal by Lutchyn et. al. and
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Oreg et. al. [127, 128] in which MZMs appear on the boundaries of proximitized
spin-orbit coupled quantum wires. Current experimental setups include semicon-
ducting InAs nanowires with epitaxial superconducting Al [139], and InAs/GaSb
heterostructures in which the quantum spin Hall effect [38, 140] can be realized
providing the possibility to proximity couple the helical edge state [134, 136].
While there is a good deal of evidence suggesting that MZMs exist in the wire-
based setups [141, 142], a conclusive proof requires directly showing the braiding
statistics of MZMs. An important step in realizing braiding with the systems
based on the helical edge state is the search for optimized device and material
properties. For optimizing the topological gap, a better theoretical understanding
of the electronic structure in such devices is required. In this section, we show
how the workflows can be used to generate tight-binding models which form the
basis for accurate device simulations. While these device simulations themselves
are outside the scope of this work, this shows the potential use of the method for
a topic of active research in current condensed matter physics.

Highly accurate first-principles methods, using hybrid functionals [18], or the
GW approximation [143], are computationally too demanding for the simulation
of realistic device geometries and heterostructures. State of the art simulations of
such structures use the k.p method [37], or empirical tight-binding (ETB) meth-
ods [144]. In both of these methods the Hamiltonian is parametrized by a small
number of parameters which are obtained empirically, for example via fitting to the
first-principles band structure. For both of these methods the choice of parameters
is ambiguous and one can obtain a good fit of the band structure while at the same
time the electronic wavefunction might be wrongly represented. This might lead
to unphysical solutions in confined geometries [145, 146], and low transferability
of the bulk models to the heterostructure in general. Recently, it was shown that
better matching the ETB with the first-principles calculations can improve their
transferability [146, 147].

Realistic simulations of heterostructures require a correct treatment of strains
at interfaces. In the k.p and the ETB method this is usually done by strain-
dependent parameter sets. However, often the symmetries are not broken correctly.
In this context, the Wannier or Wannier-like tight-binding models can offer a sig-
nificant improvement by accurately representing the first-principles wavefunction
and correctly capturing the effect of strain. As a demonstration of the AiiDA
workflows, we construct SWTB models for the III-V semiconductors InSb, InAs
and GaSb.

Including spin-orbit coupling (SOC), we require only 14 basis functions, namely
s and p orbitals centered on the In/Ga atom, and p orbitals centered on the
As/Sb atom. The popular sp3d5s∗ ETB models on the other hand require 40 [148]
basis functions. The reason for this is that WTB models generally include longer-
range neighbor interactions, whereas ETB is typically limited to nearest-neighbor
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Figure 8.4: Average (blue, left axis) and total (orange, right axis) weights of the
hopping parameters for the unstrained InSb tight-binding model, as a function of
distance.

(or next-nearest-neighbor in some cases [149]) interactions to keep the number
of parameters manageable. As illustrated in fig. 8.4, the produced tight-binding
models include long-range hopping parameters, with amplitudes quickly decaying
with distance.

To account for strain, we construct tight-binding models with biaxial (001),
(110) and (111) strains, and the uniaxial [110] strain. For each material and strain
direction, we calculated 16 models in the range of ±4% strain. Including the un-
strained models, we constructed a total of 195 tight-binding models, showing the
applicability of the AiiDA workflow to a large number of chemically and struc-
turally similar compounds.

8.3.1 Strained Tight-binding Workflow
To automatically extract tight-binding models for different strain directions and
strengths, we define an additional workflow, OptimizeStrainedFirstPrinciples-
TightBinding, as shown in fig. 8.5. The first step in this workflow, ApplyStrains-
WithSymmetry, creates the strained structures from the initial structure and strain
parameters. Since strain can break crystal symmetries, the symmetries of the un-
strained system are tested against the strained structure. With the strained struc-
tures and the remaining symmetries, we then use the OptimizeFirstPrinciples-
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Figure 8.5: Sketch of the workflow for constructing strained tight-binding models.
The color scheme is the same as in fig. 8.3.

TightBinding workflow to create a tight-binding model for each strain value.

8.3.2 First-principles Calculaধons
In the first step of generating the SWTB we need to carry out a first-principles
calculation of the bulk semiconductor structure. We performed all first-principles
calculations using the Vienna Ab-initio Simulation Package (VASP) utilizing pro-
jector augmented-wave (PAW) basis sets [30]. To obtain an accurate prediction
of the band gap we employed hybrid functionals [106]. The HSE03/HSE06 hybrid
functionals proved to be successful in computing band structures of III-V semicon-
ductors [19]. These hybrid functionals are constructed by replacing a quarter of
the density functional short-range exchange (which is the Perdew-Burke-Enzerhof
functional in our case [16]) with its Hartree-Fock counterpart. The screening pa-
rameter µ defines the separation into long- and short-range parts. In the popular
HSE06 scheme, it is set to µ = 0.2Å−1. We treated µ as an empirical parameter
such that the calculated band gap is fitted to the experimental value. In this work,
we used µInAs = 0.20Å−1, µGaSb = 0.15Å−1 and µInSb = 0.23Å−1, following the
prescriptions of Ref. [150]. Since the SOC of III-V semiconductors is significant,
we accounted for it by using scalar-relativistic PAW potentials.

InAs, GaSb and InSb crystallize in the zincblende structure with space group T 2
d

(no. 216). For the unstrained structures we perform the first-principles calculation
with the experimental lattice constant a at 300K, that is aInAs = 6.058Å, aGaSb =
6.096Å, aInSb = 6.479Å, from ref. [151]. A plane-wave energy cutoff of 380 eV
was used for all calculations. The Brillouin-zone integrations were sampled by a
6× 6× 6 Γ-centered k-points mesh.

To get optimal results from the Wannier90 code in conjunction with VASP we
found that it is necessary to turn symmetries off in VASP, that is setting the ISYM-
tag to 0. Since the states are obtained by a numerical diagonalization routine, they
obtain a random phase at each k-point. When symmetries are enabled however,
the phases are the same for all vectors forming the star of k. Since the convergence
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Figure 8.6: Sketch of the FirstPrinciplesRunBase subclass used for calculating
the Wannier90 input and reference bands with VASP and hybrid functionals.

of Wannier90 is better if the numerical phases are random, turning symmetries off
generally results in more localized Wannier functions after the projection step.

The interface for running first-principles calculations in the tight-binding ex-
traction workflow is defined in the FirstPrinciplesRunBase class (see section 8.2.2).
Here, we describe the specific sub-class used to implement these calculations with
VASP [30], VaspFirstPrinciplesRun (see fig. 8.6). In a first step, this workflow
performs a self-consistent calculation. The resulting wave-function is then passed
to calculations for the reference band-structure and the input files for Wannier90.
Two workflows VaspReferenceBands and VaspWannierInput are used to perform
these calculations. The workflows are thin wrappers around the corresponding cal-
culations from the aiida-vasp plugin [152], providing additional input and output
validation. For the band-structure calculation, the workflow also adds the k-point
grid needed for hybrid functional calculations.

8.3.3 Strain Interpolaধon
Using the AiiDA workflow, we obtained tight-binding models for strains in the
range of ±4%, in steps of 0.5%. However, it is sometimes useful to have a finer
control over the strain value without having to run additional first-principles calcu-
lations. A common way of obtaining this is by linear interpolation of the hopping
parameters. Given two strain values s1 and s2, for which the hopping parameter
Hsi [R] are known, the hopping parameters for an unknown s∗ can be calculated
as

Hs∗ [R] = αHs1 [R] + (1− α)Hs2 [R], (8.33)

where
α =

s∗ − s2
s1 − s2

. (8.34)

Since this method assumes that the hopping parameters are a linear function
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Figure 8.7: Comparison between the InSb band structure obtained directly from
the tight-binding model with 2% biaxial (001) strain (blue), and from the linear
interpolation (orange) between models with 1% and 3% strain. The energy scale is
fixed by setting the top of the valence bands at Γ to zero. (a) At the electron-volt
scale, the only visible difference is in the upper bands along the Γ - K line. (b)
Close-up of the bands around Γ. The bands for 1% (purple) and 3% strain (green)
are also shown.

of strain value, it becomes unreliable when s∗ is too far away from s1 and s2. For
this reason, we compared a tight-binding model for InSb with 2% biaxial (001)
strain obtained from linear interpolation of 1% and 3% strain models with one
calculated directly from first-principles. Figure 8.7 shows a comparison of the two
band-structures, which we find to be almost identical.

Important to note is that while linear interpolation works well for strains of
the same kind, this is not necessarily the case when combining two models with
different strain directions. The reason for this is that the symmetries of a particular
structure depend on the direction of the applied strain, but (unless it is zero) not on
its strength. As a result, a tight-binding model resulting from linear interpolation
between two models of a different strain direction would not have the correct
symmetries.

8.3.4 Results
To validate the tight-binding models obtained using the aiida-tbextraction
workflows, several material parameters were calculated. Table 8.1 shows effective
masses and g-factors for the unstrained models, in comparison to first-principles [150]
and experimental [150, 153] values. Effective masses for the tight-binding models
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Material Method |m∗
SO| |m∗

LH| |m∗
HH| |m∗

e| g-factor
HSEbgfit 0.129 0.018 0.245 0.017

InSb SWTB 0.118 0.016 0.219 0.015 -49.8
Expt. 0.110 0.015 0.263 0.014 -50.6
HSEbgfit 0.112 0.033 0.343 0.027

InAs SWTB 0.118 0.036 0.340 0.029 -15.3
Expt. 0.140 0.027 0.333 0.026 -15
HSEbgfit 0.143 0.047 0.235 0.042

GaSb SWTB 0.124 0.039 0.20 0.036 -15.1
Expt. 0.120 0.044 0.250 0.039 -7.8

Table 8.1: Effective masses of light hole (LH), heavy hole (HH), split-off hole
and electron at Γ point along [100] direction in the unstrained case. Values for
symmetrized Wannier-like tight-binding models (SWTB) are compared to first-
principles (HSEbgfit) [150] and experimental results [150, 153].

Material Energy Windows [eV] ∆

InSb initial (−4.5, [−4, 6.5], 16) 0.107
optimized (−4.44, [−3.24, 8.67], 14.01) 0.033

InAs initial (−4.5, [−4, 6.5], 16) 0.113
optimized (−4.44, [−3.59, 7.34], 15.04) 0.046

GaSb initial (−4.5, [−4.5, 7], 16) 0.082
optimized (−5.35, [−3.34, 7.90], 14.27) 0.043

Table 8.2: Initial and optimized energy windows used for calculating unstrained
tight-binding models, and the corresponding band-structure mismatch as defined
in eq. (8.32).

were calculated using second-order polynomial fit with range 0.001 Å−1. The g-
factor calculations were performed using both perturbation theory and a Landau
level calculation [154], with good agreement (< 0.5% difference) between the two
methods.

The effect of the energy window optimization is shown in table 8.2, which lists
the initial and optimized windows, as well as the corresponding band-structure
mismatch. As shown in fig. 8.2, it can be seen that the mismatch is substantially
reduced after optimization.

Finally, the effect of strain on the energy levels at high-symmetry points is
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shown in figs. 8.8 and 8.9. The numerical data is listed in the supplementary files
of ref. [155].

In the supplementary materials of ref. [155], an export of the AiiDA database
is given. This database contains the full provenance of each calculation performed
to create the tight-binding models. For ease of accessibility, a separate data set
containing only the 195 strained tight-binding models is also given.

8.4 Conclusion and Outlook
We have implemented a workflow for the automatic construction of Wannier tight-
binding models from first-principles calculations. Building on the known procedure
for calculating these models, we introduced a post-processing step to symmetrize
the models, and an optimization of the energy windows used for disentanglement.
These workflows are implemented in the aiida-tbextraction package, which is a
free and open-source plugin for the AiiDA framework. As a test case, tight-binding
models for strained III-V semiconductor materials were calculated. These results
should enable device simulations for Majorana designs and other quantum devices.

The workflows have been implemented in a modular and extensible way. As a
result, they can be used as building blocks for further improvements in automat-
ing the process of generating Wannier tight-binding models. Possible directions
include extending the number of first-principles codes which are compatible with
the plugin, adding different fitness criteria for the energy window optimization,
and further minimizing the number of tunable parameters. For example, the need
for choosing initial trial orbitals could be eliminated either by using another opti-
mization step, or by utilizing the method of Ref. [125].
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Figure 8.8: Strain dependence of band energies for biaxial (001) and (110) strains.
The two highest valence bands and the lowest conduction band are shown at the
Γ (blue), X (orange) and L (green) points, where each band is doubly degen-
erate. Energy values are shifted such that the valence band maximum at Γ is
zero. The line represents values calculated from the tight-binding models with
linear interpolation (eq. (8.33)) in steps of 0.1%. For comparison, the points show
values calculated from first-principles. We find a good agreement between the
tight-binding and first-principles values.
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Figure 8.9: Strain dependence of band energies for biaxial (111) and uniaxial [110]
strains. The two highest valence bands and the lowest conduction band are shown
at the Γ (blue), X (orange) and L (green) points, where each band is doubly
degenerate. Energy values are shifted such that the valence band maximum at Γ
is zero. The line represents values calculated from the tight-binding models with
linear interpolation (eq. (8.33)) in steps of 0.1%. For comparison, the points show
values calculated from first-principles. We find a good agreement between the
tight-binding and first-principles values, except for the conduction band value at
the L - point at −4% biaxial (111) strain.
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9
Automated Classificaধon of Band
Degeneracies

In this final chapter, we discuss the problem of finding and classifying all band
degeneracies present in a given system. We split this problem into two steps:
First, we use an optimization scheme to search for possible nodal features. The
goal of this step is to produce a point cloud which lies densely in the nodal features
of the material. In the second step, we aim to identify the nodal features from this
point cloud. This procedure is an improvement and generalization of the method
used in section 6.2.2.

Following this separation into two steps, the first two section of this chapter
describe the searching and identification steps, respectively. In the final section, we
show some applications of the procedure. We first validate the method using known
topological semimetals, and then apply it to classify novel topological semimetals.

The methods described here are implemented in the open-source nodefinder
library.

9.1 Nodal Search Algorithm
In order to find the nodal features present in a given material, we need a function
that evaluates the band gap, as a function of position kin reciprocal space. This
is typically done using a tight-binding or k · p model. Calculating the gap di-
rectly from first principles is also possible, but significantly more computationally
demanding.

The goal of this first step in classifying band degeneracies is to solve the root-
finding problem for this band gap function. Since the band gap is a relatively
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well-behaved function – it is continuous, and smooth outside of a set of measure
zero – finding a nodal point is not a difficult task (if it exists), and one of many
existing algorithms can be used for this purpose [132, 156]. However, in order to
classify all nodal features, we need to find all roots of the given function. While
techniques for finding all roots (or minima) such as simulated annealing [157] or
minima hopping [158] exist, these perform well only if each minimum to be found
is a single point. In contrast, the nodal features in materials can also have higher
dimension, such as nodal lines or planes.

For such higher-dimensional nodal features, the goal is to create a point cloud
of nodal points which lies densely in the nodal feature. Specifically, for a nodal
feature F , the point cloud C should be such that no point in F is further than a
given cutoff distance dc away from the nearest nodal point:

sup
k∈F

[
min
ki∈C

||ki − k||
]
≤ dc. (9.1)

As a consequence, two points ki,kj ∈ C should be no further than twice the cutoff
distance apart. We call this distance feature size

df = 2 dc. (9.2)

To achieve this, we first perform a Nelder-Mead [132] optimization from a mesh
of starting positions, as illustrated in fig. 9.1 (panels a and b). The mesh should
be sufficiently dense that at least one resulting point lies on each nodal feature.
By default, we use a mesh of side-length 10. Since the search space needs to be
covered roughly equally, the Nelder-Mead method is a good choice of optimization
technique. Unlike other techniques such as steepest descent, it does not perform
large jumps, and instead favors minima which are close to the starting point.

Next we perform a refinement step, where the surrounding area for each nodal
point is explored. On a small box around a given nodal point, we again place
starting positions on a mesh, as shown in fig. 9.1 (panels c and d). 1 This refinement
step is repeated for each nodal point which is at least 2

3
dc away from the nearest

neighbor for which a refinement was already performed. A smaller value than the
cutoff distance is used to improve the resilience of the procedure, so that eq. (9.1)
will be fulfilled. We call this the reduced cutoff distance

d̃c =
2

3
dc. (9.3)

When performing the refinement step, a possible issue is that the minimization
will keep finding the same nodal points instead of exploring new ones. This is

1The default size of this box is 10
3 dc = 5d̃c, and we use a mesh of side-length 3.
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Figure 9.1: Illustration of the nodal search algorithm for a system with two nodal
points (marked with crosses) and one nodal line. (a) Initial starting points (blue),
on a 5 × 5 mesh. (b) Nodal points (orange) found after the initial minimization
step. (c) Refinement starting points (blue) around a given nodal point (green), on
a 3× 3 mesh. (d) Nodal points (orange) found with the refinement starting points
of panel c.
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Figure 9.2: Example of a biased potential, f(x, y) = |x2 + y2 − 0.7| · (10x2 + 0.01).
(a) Contour plot of the potential, with logarithmic height levels. (b) Nodal search
results with (orange) and without (blue) artificial repulsive potential, using a 2×2
initial mesh, 3× 3 refinement mesh, and df = 0.2.

especially true when the potential is biased such that certain parts of the nodal
feature are more attractive, as shown in fig. 9.2 (panel a). To avoid this problem,
we add an artificial repulsive potential

Vart.(k) =
{
∞ if min

ki∈C
||k − ki|| ≤ d̃c

0 else
, (9.4)

where C is the set of nodes which were already found. The effect of this potential
is that nodal points which were already found are avoided, and exploration of new
areas is improved. The main advantage of using an infinite repulsive potential is
that it is scale-invariant, meaning that its behavior does not depend on the scale
of the gap function. It is made possible because the Nelder-Mead algorithm only
compares function values, and does not compute derivatives.

Crucially, after the minimization using the artificial potential has converged, we
perform a second minimization starting from the previous result without artificial
potential. If the result of the first minimization is a true minimum, it will not
move any further. However, if it is a local minimum introduced only due to the
artificial potential, it will then converge back to the real minimum.

By combining the Nelder-Mead algorithm from multiple starting points with a
refinement step and an artificial repulsive potential, we find that we can reliably
search for nodal features in real materials, as will be shown in section 9.3.
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9.2 Idenধficaধon of Nodal Features
Having generated a point cloud describing the nodal features, we need to iden-
tify the individual features. This is done in three steps: First, the point cloud
is separated into clusters, each corresponding to a distinct feature. Next, the di-
mensionality of each component is determined. Finally, the shape and topological
properties of the nodal feature can be determined.

In doing this analysis, we assume that the nodal points lie densely in the
features to be identified, as defined in eq. (9.1).

9.2.1 Clustering
The first step in the identification of nodal features is to separate the full point
cloud into parts which belong to the same feature. For this purpose, we consider
two nodal points to be “neighbors” if they are less than the feature size df apart.
Points which are related by a (possibly indirect) neighbor relationship are then
grouped together. Since this is an equivalence relation, it defines a unique sep-
aration of the points into groups. In order for this procedure to correctly assign
points to nodal features, two conditions must be met: First, the nodal points must
lie densely in the nodal feature, as defined in eq. (9.1). If this condition is not
met, one nodal feature could be split into multiple groups. Second, the distance
between two nodal features must be at least df . If this is not the case, two features
will incorrectly be classified as the same.

To compute this clustering of nodal points, we first generate a list of neighbors
for each nodal point. This can be done efficiently because the nodal points are
stored in a cell list. We also keep track of the distance to each neighbor, which
will be used in the subsequent steps. Using this graph representation of the nodal
points the connected components can easily be determined, for example using
breadth-first search. We use the networkx library [159] for this purpose.

9.2.2 Dimensionality Analysis
Given a cloud of nodal points, we would like to determine the dimension of the
feature that they describe. This is a problem known as finding the intrinsic di-
mension of a dataset, and is commonly studied in the context of dimensionality
reduction. As such, a number of techniques have been developed for estimat-
ing this dimension [160–167]. Ref. [160] for example estimates the dimension by
statistically evaluating either distances or angles between a given point and its
neighbors. Here, we use a very similar technique, but using instead the n - di-
mensional volume spanned by neighbor vectors as a measure. In the following, we
describe this process in some detail.
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First, we consider the idealized case of an n-dimensional flat F (a point, line,
plane, etc.) in l-dimensional space. If we pick two random points p0 and p1 on F ,
the Euclidean distance ∥p1−p0∥ is nonzero in the generic case, unless F is a point.
When picking three points p0, p1 and p2, the area spanned by their connecting
vectors k1 := p1 − p0 and k2 := p2 − p0 is nonzero in the generic case, unless F is
a line or a point. This can be generalized to arbitrary dimensions as follows: To
determine if F has at least dimension m ≤ l, we pick m + 1 random points, and
construct the vectors k1 := p1 − p0, . . . ,km := pm − p0. From the singular value
decomposition of the matrix

M =

 | |
r1 · · · km
| |

 = UΣV †, (9.5)

we can compute the m-dimensional volume

V m = |detΣ| (9.6)

spanned by these vectors. Again, it is zero in the generic case only if the dimension
of F is smaller than m. By finding the first m for which V m is zero, we can thus
determine the dimension of F as n = m− 1.

Of course, the nodal features of interest are in general not flat. Nevertheless,
the dimension can be determined if they are differentiable outside of a subset of
measure zero. In that case, we can make use of the fact that F is almost flat in a
small region around a generic point. Instead of picking any random points on F
to compute the m-dimensional volume, we thus pick points within a certain radius
r around the initial point p0. A convenient choice of r is the feature size r = df ,
since we have already obtained a list of neighbors with maximum distance df for
each point. The average m-dimensional volume should then either be close to zero
if the dimension of F is less than m, or close to the exact value for a flat F which
can be calculated (choosing r = 1 for simplicity) as

V̄ m
exact =

1

(VSm)m

∫
Sm

· · ·
∫
Sm

∣∣∣∣∣∣det

 | |
k1 · · · km

| |

∣∣∣∣∣∣ dk1 · · · dkm, (9.7)

where Sm is the m-dimensional unit sphere, and VSm is its volume. By choosing to
calculate the volume directly in m-dimensional space instead of a higher dimension
we can avoid the singular-value decomposition and directly use the determinant.
For m = 1, 2, 3, this can easily be evaluated algebraically:
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Casem = 1

The unit sphere in one dimension is simply the interval [−1, 1], leading to

V̄ 1
exact =

1

2

1∫
−1

|k| dk =
1

2
. (9.8)

Casem = 2

In two dimensions, we can simplify the calculation by noticing that the problem is
rotationally invariant. By an appropriate change of coordinates, we can thus keep
the direction of k1 fixed and only rotate k2. In polar coordinates, we get

V̄ 2
exact =

1

π2

1∫
0

dr1
1∫

0

dr2
2π∫
0

dφ1

2π∫
0

dφ2 r1r2

∣∣∣∣det
(
0 r2 cosφ2

r1 r2 sinφ2

)∣∣∣∣ (9.9)

=
2π

π2

 1∫
0

r2dr

2 2π∫
0

|sinφ2| dφ2 =
8

9π
≈ 0.283.

Casem = 3

The same rotational symmetry trick can be applied in three dimensions, to obtain

V̄ 3
exact =

(
3

4π

)3

4π

 1∫
0

r3dr

3 2π∫
0

dφ2

2π∫
0

dφ3

π∫
0

dϑ2

π∫
0

dϑ3 × (9.10)

× sinϑ2 sinϑ3

∣∣∣∣∣∣det

0 cosφ2 sinϑ2 cosφ3 sinϑ3

0 sinφ2 sinϑ2 sinφ3 sinϑ3

1 cosϑ2 cosϑ3

∣∣∣∣∣∣
=

27

45π2

 π∫
0

(sinϑ)2 dϑ

2 2π∫
0

dφ2

2π∫
0

dφ3 |sin(φ2 − φ3)|

=
27

45π2

(π
2

)2
8π =

27π

512
≈ 0.166.

The actual values computed however can differ significantly from this theoret-
ical value, due mostly to three factors:
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1. The feature F is not exactly flat within the sphere of radius r, as mentioned
previously. Figure 9.3 shows the distribution of distance (one-dimensional
volume) and area (two-dimensional volume) for a straight and a curved line.
While the area is exactly zero for the straight line, the curvature adds a
non-zero contribution.

2. Since there is only a finite number of neighboring points within the given
radius, the value for the m-dimensional volume is only approximate, as il-
lustrated in fig. 9.4.

3. The positions of the nodal points are not exact. As illustrated in fig. 9.4
(panels g and h), this again adds a non-zero contribution even if m > n.

Despite these sources of error, the estimate for the m-dimensional volume is
still roughly zero when the dimension n of the feature is less than m, and close to
the exact value when n ≥ m. We consider a point p0 to have a “local dimension”
of at least m if the m-dimensional volume V̄ m

num. computed numerically is at least
half the exact value, i.e.

V̄ m
num. ≥ V̄ m

exact/2. (9.11)
In this way, we can assign a local dimension to each of the nodal points. The dimen-
sion of the nodal feature is then chosen to be the most common local dimension,
under the condition that at least two thirds of all points have that dimension. In
this way, a stable result can be found even in the presence of significant curvature
and error in the nodal point positions.

Unfortunately, the number of volume calculations that are needed to calculate
the local dimension in this way scales linearly with the number of points, and
exponentially with the number of neighbors for each point. To circumvent this,
we can choose to calculate the local dimension only for a subset of points. After
a minimum number of points are calculated, we keep adding points only until the
quorum of two thirds having the same local dimension is reached. Similarly, we can
calculate the local dimension for a given point using only a subset of all neighbor
combinations. As a stopping criterion, we require that the estimated error for
V̄ m

num. is less than half its distance to the cutoff value V̄ m
exact/2:√

Var[V m
num.]

N − 1
<

1

2

∣∣V̄ m
num. − V̄ m

exact/2
∣∣ , (9.12)

where N is the number of neighbor combinations that have been evaluated.

9.2.3 Classificaধon
The final step in identifying nodal features is to find a parametrization for its shape,
and where applicable determine the topological properties of the node. Since this
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Figure 9.3: Exact distribution of length and area with neighbors (orange) on a
line through the origin (blue). The distributions ρ (right panels) are sampled
using a kernel density estimator with bandwidth factor 0.05. (a) Distribution for
a straight line. (b) Distribution for a curved line. The curvature adds a non-zero
contribution to the area distribution.

is done differently for each node dimension, we limit the discussion to point and
line nodes, which are the most common nodal features in topological metals.

Weyl Node Idenধficaধon

For nodal points, the classification step is quite straightforward. First, the average
position is computed from the given nodal points. In doing so, one needs to take
into account that the coordinate system used can be periodic. If that is the case,
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Figure 9.4: Distribution of length and area with neighbors (orange) sampled from a
line through the origin (blue). The distributions ρ (right panels) are sampled using
a kernel density estimator with bandwidth factor 0.05. (c) Curved line, evaluated
with 20 random neighboring points. The random sampling causes fluctuations
compared to the exact distribution (fig. 9.3 (b)). (d) Straight line, with Gaussian
noise of width σ = 0.05 in the neighbor positions. The error in the nodal point
position adds a nonzero contribution to the area compared to the exact result
(fig. 9.3 (a)).
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the average position cannot simply be calculated as an average

k̄ =
1

N

N∑
i=1

ki (9.13)

of position vectors, since the different ri might be on opposite sides of the periodic
boundary. For example, the average between vectors k1 = (0.99) and k2 = (0.01)
would incorrectly yield k̄ = (0.5) instead of k̄ = (0.). For this reason, we need to
first calculate the shortest connecting vector τi between a given position ki and
the (arbitrarily chosen) first position k1

ki = k1 + τi + T, (9.14)

where T is a reciprocal lattice vector chosen such that the length of τi is minimized.
The average position can then be computed as

k̄ = k1 +
1

N

N∑
i=1

τi. (9.15)

Having calculated the average position, the topological properties of the nodal
point can be evaluated by calculating the Chern number on a sphere surrounding
the point, as described in chapter 3. For higher-order topological nodes, such as
for example Dirac points, the topological invariant to be calculated depends on
the symmetry that protects them. As a consequence, this is currently not done
automatically.

Line Idenধficaধon

In the case of nodal lines, the goal is to find a minimal representation that accu-
rately represents the nodal line. For simple open or closed paths, we would like to
obtain a parametrization of the line. To obtain such a representation, we aim to
start at a given nodal point, and then iteratively follow the nodal line by going in
the direction where its neighbors are most dense. In each step, we add the current
node and the edge connecting it to the previous node to a result graph gres. In the
following, we describe in detail how these nodes are chosen.

Given a starting point p0 with neighbors {ni}i, we first define the unit vector
in the direction of the i - th neighbor

ei :=
ni − p0

∥ni − p0∥
. (9.16)

To determine how many other neighbors lie in the same direction, we assign a
weight

wi =
∑
j ̸=i

max(ei.ej, 0) (9.17)
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to each neighbor. In this weight, negative values are ignored because neighbors
typically come in two groups of roughly opposite direction, as shown in fig. 9.5
(panel b). A possible choice for the next point would be to simply pick the neighbor
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Figure 9.5: Illustration of the process for choosing the next point along the nodal
line. The starting point p0 is shown in blue, and all possible neighbors in orange.
The point which was chosen is indicated with a green line. In panel (b), the
neighbor positions are projected onto the unit sphere.

with the maximum weight and continue from there. However, it is also desirable
that the next point is not too far from the existing one, to create a smoother
representation of the nodal line. To account for this we multiply the weight by an
empirical factor

(1 + 5 [di/df ])
−1 , (9.18)

where di = ∥ni −p0∥ is the distance to each neighbor. When choosing subsequent
steps, we also need to take into account that the representation of the nodal
line should continue in the same direction along the line. This can be done by
multiplying the weight by a factor

ei. (pk − pk−1) , (9.19)
where pk and pk−1 are the current and previous node respectively, and ni and ei

are calculated with respect to pk. In this way, only neighbors which are in the
positive half-plane with respect to the current line direction are considered. An
additional issue coming from this factor is that pk − pk−1 is numerically unstable
if pk and pk−1 are too close. This can be avoided by another factor in the weight

αi =

{
1 if di/df > 10−3

0 else
, (9.20)
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which prohibits selecting neighbors which are less than a thousandth of the feature
size away. Furthermore, we want to avoid passing through the line twice. That is,
if a node already exists in the result graph gres, it is prioritized using the factor

βi =

{
2 if ni ∈ gres

1 else
. (9.21)

Nodes which represent a crossing of two lines, having a degree of more than two
in the result graph, are also prioritized with the factor

δi =

{
2 if degres(ni) > 2

1 else
. (9.22)

Finally, the total weight by which the next point pk+1 is selected is given by

w̃i = αi βi δiwi
ei.(pk − pk−1)

1 + 5 [di/df ]
. (9.23)

Using this heuristic, we trace the shape of the line until there are no more
neighboring points with positive weights. This means that the end of the line is
reached, since there are no further points in the half-plane given by the direction
pk − pk−1. In the case of a closed loop, we stop if at least two consecutive nodal
points were already part of the result graph gres. Since a nodal line feature can
be more complex and is not necessarily completely traced in the first run, this
procedure is repeated until all nodes in the initial graph have at least one neighbor
in the result graph. The new starting point is chosen to be (in order of precedence):

1. A node on the result graph with degree one. In this case, the direction is
forced to be opposite the outgoing edge which already connects to the node.
To see why this is necessary, consider an open line: when tracing the line
from p0, one of two possible directions is chosen arbitrarily. To complete the
line, the other direction must also be considered.2

2. Any node which does not have a neighbor on the result graph gres.

Once this simplified graph gres is constructed, the two cases of an open line and
a closed loop can be identified by computing the degree of all vertices in the graph.
Since there can be an arbitrary number of vertices of degree two, we ignore them
for simplicity. If there are no other vertices, the shape of the nodal line must be a
closed loop. If there are only two vertices of degree one, it must be an open line.

2Nodes at which a trace ended, and those for which this procedure was already done, are
excluded.
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In these cases, it is simple to create a parametrization of the line: For an open
line, we can start at either one of the vertices with degree one and traverse the
graph to create an ordered list of positions. For a closed loop, we can start at any
vertex and traverse the graph in one of the two possible directions to again create
an ordered list of positions. For more complex shapes, the degree of the vertices
is still a useful index, but it no longer uniquely defines the shape of the line.

9.3 Materials Applicaধons
Having described the two-step process of classifying topological semimetals, we
now demonstrate its use on real materials. To reduce the computational cost
required to find band degeneracies, we first create tight-binding models for each
of the materials described here, using the method shown in chapter 8. First-
principles calculations were performed with the VASP package, using projector
augmented-wave (PAW) basis sets [30].

9.3.1 Validaধon on Known Topological Semimetals
As a first step, we apply the method of classifying band degeneracies to two known
topological semimetals, molybdenum ditelluride (MoTe2) [5] and iridium tetraflu-
oride (IrF4) [84]. This serves as a test and validation of the method, by checking
the results obtained here against previous calculations.

Type-II Weyl Semimetal MoTe2

Molybdenum ditelluride (MoTe2) is a promising material candidate to host the
type-II Weyl phase, as indicated both by calculations [74][5] and spectroscopic
measurements [75–78]. Here, we study its orthorombic γ phase (space group no.
31), as reported in ref. [5]. In this phase, MoTe2 hosts only four type-II Weyl
points [5], related by symmetry.

To construct a tight-binding model for MoTe2, we use d orbitals centered on
the molybdenum atoms, and p orbitals centered on the tellurium atoms as a basis.
First-principles calculations were calculated using a 8 × 6 × 4 k-point mesh, and
a cutoff energy of 300 eV. For the subsequent search of band degeneracies, a
feature size of df = 0.01 and a 5× 5× 5 mesh of initial starting points was used.
As expected, we find four type-II Weyl nodes in the kz = 0 plane, as listed in

3Positions are given in reduced reciprocal coordiantes.
4Note that the chirality is inverted compared to ref. [5], due to using a different convention

in the definition of chirality.
5Minimum eigenvalue of the matrix C, as defined in eq. (4.6).
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No. Position3 E − EF [eV] Chirality4 Type λmin(C)5

1 (0.1018, 0.0498, 0.0000) 0.069 −1 II −5.002
2 (0.1018, 0.9502, 0.0000) 0.069 1 II −5.002

Table 9.1: List of Weyl nodes in MoTe2, showing only one Weyl node in each
pair of nodes related by time-reversal symmetry. The type is calculated from
the minimum eigenvalue λmin of the matrix C, as defined in eq. (4.6). Negative
minimum eigenvalues correspond to type-II Weyl nodes, whereas positive minimum
eigenvalues correspond to type-I Weyl nodes.
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Figure 9.6: Nodal chain (green) and Dirac node (orange) of IrF4, in reduced coor-
dinates.

table 9.1. The exact positions of the Weyl nodes are very close to the values of
ref. [5], which places the Weyl node no. 1 at k = (0.1011, 0.0503, 0).

Nodal-Chain Semimetal IrF4

As an example of a nodal line semimetal, we study iridium tetrafluoride (IrF4),
which belongs to the non-symmorphic space group Fdd2 (no. 43) [168]. Ref. [84]
predicts this material to host a nodal chain, and a single Dirac point.
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We use a 6 × 6 × 6 k-point mesh for first-principles calculations of IrF4, with
an energy cutoff of 300 eV. To construct a tight-binding model, we use a basis
of s and d orbitals centered on the iridium atoms, and p orbitals centered on the
fluorine atoms. For the search of nodal features, we use a feature size of df = 0.01
and a 5 × 5 × 5 initial mesh. The result of this calculation is shown in fig. 9.6,
clearly showing both the nodal chain and the Dirac node.

9.3.2 Applicaধon to Novel Topological Semimetals
Having tested the method for classifying band degeneracies on known topological
semimetals, we now study materials of unknown topological nature. To select ap-
propriate candidate materials, we used the materials project database [169], which
utilizes the pymatgen [170] and fireworks [124] libraries. For the reference band
structure, reciprocal space paths were selected with the SeeK-path library [171],
utilizing the spglib library [172] and ASE parser [173]. The Bilbao crystallo-
graphic server [174–176] was used to transform some input files.

The materials presented here were chosen without taking into account their
growth, or whether topological features might be hidden by other bulk bands. As
such, we do not expect that they are good material candidates for any specific
application. Nevertheless, we demonstrate that this method can reliably identify
topological features of unknown materials. This opens up the possibility of a more
targeted materials search.

Weyl Semimetal CaCuO2

In a high-pressure phase, calcium copper dioxide (CaCuO2) crystallizes in an or-
thorhombic structure [177] with space group P21212 (no. 18). Its unit cell is given
by (in Ångström)

a1 = (5.4603, 0, 0)
a2 = (0, 11.1351 0)
a3 = (0, 0, 3.2029).

In reduced coordinates, there are four equivalent symmetry-related positions

( x, y, z)
(−x, −y z)
( x+ 1/2, −y + 1/2, −z)
(−x+ 1/2, y + 1/2, −z),

and the atoms are positioned – omitting the symmetry-related positions – at
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Ca (0.4756, 0.3627, 0.5046)
Cu (0.9850, 0.3781, 0.0071)
O 1 (0.2733, 0.7457, 0.9990)
O 2 (0.2565, 0.4939, 0.0155).

For computing a tight-binding model of CaCuO2, we performed first-principles
calculations using a 5× 2× 10 k-point mesh, with a cutoff energy of 520 eV. We
chose s and d orbitals centered on the calcium atoms, s, p, and d orbitals centered
on the copper atoms, and s and p orbitals centered on the oxygen atoms as a
basis for the tight-binding model. The band structure of this model is shown in
fig. 9.7, compared to the first-principles reference. Note that there is a significant
difference between the two band structures along the Y − Γ line, for the higher
conduction bands. The difference is smaller however in the bands which form the
nodal features discussed here.
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Figure 9.7: Band structure of CaCuO2 computed from first-principles (blue), com-
pared to the tight-binding values (orange). The tight-binding energy values are
shifted to have the same valence band maximum at Γ as the first-principles results.

Using the tight-binding model, we run the node classification algorithm with
a feature size of df = 0.002 and an initial mesh of size 15× 15× 15. We find that
CaCuO2 hosts 64 Weyl nodes, as listed in table 9.2 and shown in table 9.2. All
Weyl nodes are located in the vicinity of the kx = 0.5 plane, between kx = 0.448
and kx = 0.552. We find that Weyl nodes of both type-I and type-II are present in
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Figure 9.8: Weyl nodes in the Brillouin zone of CaCuO2. Positive chirality nodes
are colored orange, and negative chirality ones are colored blue.

the system. For many Weyl nodes the minimum eigenvalues of the matrix C (as
defined in eq. (4.6)) is close to zero, meaning that they are close to a type transition.
In these cases, the type of the Weyl node should be considered undecided, due to
the possible dependence on numerical details.
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No. Position3 E − EF [eV] Chirality Type λmin(C)5

1 (0.4480, 1.0000, 0.4949) −0.123 −1 I 0.010
2 (0.4480, 0.0000, 0.5051) −0.123 −1 I 0.010
3 (0.4503, 0.0000, 0.4350) −0.122 1 I 0.012
4 (0.4503, 1.0000, 0.5650) −0.122 1 I 0.012
5 (0.4534, 1.0000, 0.3707) −0.125 1 II −0.046
6 (0.4534, 1.0000, 0.6293) −0.125 1 II −0.046
7 (0.4535, 1.0000, 0.6490) −0.132 −1 II −0.239
8 (0.4535, 0.0000, 0.3510) −0.132 −1 II −0.239
9 (0.4559, 0.2215, 0.3214) −0.154 1 II −0.142
10 (0.4559, 0.7785, 0.6786) −0.154 1 II −0.142
11 (0.4559, 0.7785, 0.3214) −0.154 1 II −0.142
12 (0.4559, 0.2215, 0.6786) −0.154 1 II −0.142
13 (0.4565, 1.0000, 0.1045) −0.172 1 I 0.057
14 (0.4565, 0.0000, 0.8955) −0.172 1 I 0.057
15 (0.4572, 0.0000, 0.0821) −0.174 −1 I 0.004
16 (0.4572, 0.0000, 0.9179) −0.174 −1 I 0.004
17 (0.4583, 0.2673, 0.6871) −0.163 −1 II −0.301
18 (0.4583, 0.2673, 0.3129) −0.163 −1 II −0.301
19 (0.4583, 0.7327, 0.3129) −0.163 −1 II −0.301
20 (0.4583, 0.7327, 0.6871) −0.163 −1 II −0.301
21 (0.4694, 0.2520, 0.0000) −0.180 −1 I 0.000
22 (0.4694, 0.7480, 0.0000) −0.180 −1 I 0.000
23 (0.4703, 0.3711, 0.2930) −0.181 −1 II −0.016
24 (0.4703, 0.6289, 0.2930) −0.181 −1 II −0.016
25 (0.4703, 0.6289, 0.7070) −0.181 −1 II −0.016
26 (0.4703, 0.3711, 0.7070) −0.181 −1 II −0.016
27 (0.4753, 0.4150, 0.7919) −0.185 1 I 0.006
28 (0.4753, 0.5850, 0.2081) −0.185 1 I 0.006
29 (0.4753, 0.4150, 0.2081) −0.185 1 I 0.006
30 (0.4753, 0.5850, 0.7919) −0.185 1 I 0.006
31 (0.4860, 0.5952, 0.0000) −0.180 1 I 0.000
32 (0.4860, 0.4048, 1.0000) −0.180 1 I 0.000

Table 9.2: List of Weyl nodes in CaCuO2, showing only one Weyl node in each
pair of nodes related by time-reversal symmetry.
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Type-II Weyl Semimetal Sc6N2O5

Because Weyl nodes can not be adiabatically gapped out, they can be stable even in
the absence of any crystal symmetries. Here, we show a material which exemplifies
this: Sc6N2O5 is predicted computationally [169] to crystallize in the trivial space
group P1 (no. 1), having only time-reversal symmetry. This predicted structure
has a primitive cell with unit vectors (in Ångström)

a1 = ( 0.9209, −5.3916, 0)
a2 = (−5.4656, 0, 0)
a3 = ( 0.9354, 1.1047, −5.2781).

Since the space group is P1, there are no symmetry-related equivalent positions
in the unit cell. The atomic positions in reduced coordinates are as follows:

Sc 1 (−0.5740, −0.1542, −0.2762)
Sc 2 (−0.8525, −0.7181, −0.4316)
Sc 3 (−0.7260, −0.4338, −0.8599)
Sc 4 (−0.2706, −0.5631, −0.1488)
Sc 5 (−0.1419, −0.2785, −0.5563)
Sc 6 (−0.4357, −0.8523, −0.7234)
N 1 (−0.9222, −0.3751, −0.2236)
N 2 (−0.4994, −0.5016, −0.5009)
O 1 (−0.7722, −0.0761, −0.6241)
O 2 (−0.6221, −0.7764, −0.0758)
O 3 (−0.3770, −0.2223, −0.9205)
O 4 (−0.2260, −0.9220, −0.3805)
O 5 (−0.0804, −0.6265, −0.7784)

We perform first-principles calculations using a 4×4×4 k-point mesh, with an
energy cutoff of 520 eV. For constructing the tight-binding model, a basis of s and
d orbitals centered on the scandium atoms, s and p orbitals centered on the oxygen
atoms, and s and p orbitals centered on the nitrogen atoms is used. Figure 9.9
shows the band structure of both the tight-binding model and the first-principles
calculated.

By running the node finding algorithm with df = 0.004 and an initial mesh
of size 8 × 8 × 8, we find 24 Weyl nodes, as listed in table 9.3 and shown in
fig. 9.10. Most of these Weyl nodes are of type-II, except four which are very
close to the type transition. These four Weyl nodes – number 5 and 6, and their
time-reversal images – form two pairs which are close to each other and both have
positive chirality. While most other Weyl points are close to a node of the opposite
chirality and thus prone to being annihilated, another two pairs of Weyl nodes with
negative chirality – number 11 and 12, and their time-reversal images – also exist.
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Figure 9.9: Band structure of Sc6N2O5 computed from first-principles (blue), com-
pared to the tight-binding values (orange). The tight-binding energy values are
shifted to have the same valence band maximum at Γ as the first-principles results.

Interestingly, the negative chirality and positive chirality pairs are quite far apart
in energy. Unfortunately, all Weyl nodes found here more than 0.2 eV away from
the Fermi energy6. As such, they very probably have negligible influence on the
transport properties of the material.

6It bears mentioning that the Fermi energy estimate obtained from the first-principles calcu-
lation might well be inaccurate.
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Figure 9.10: Weyl nodes in the Brillouin zone of Sc6N2O5. Positive chirality nodes
are colored orange, and negative chirality ones are colored blue.

No. Position3 E − EF [eV] Chirality Type λmin(C)5

1 (0.0001, 0.9218, 0.9843) 0.772 −1 II −0.660
2 (0.0060, 0.0401, 0.0458) 0.795 1 II −0.697
3 (0.0086, 0.1828, 0.0008) 0.686 1 II −1.148
4 (0.0088, 0.2242, 0.9953) 0.647 −1 II −1.070
5 (0.0118, 0.5559, 0.0152) 0.534 1 II −0.005
6 (0.0149, 0.5449, 0.0157) 0.534 1 I 0.002
7 (0.0678, 0.3085, 0.0884) 0.685 −1 II −2.150
8 (0.0728, 0.3078, 0.0894) 0.691 −1 II −2.011
9 (0.2090, 0.4483, 0.6556) −0.269 1 II −2.030
10 (0.2144, 0.4439, 0.6459) −0.286 1 II −1.690
11 (0.3393, 0.3775, 0.4156) −0.257 −1 II −2.541
12 (0.3421, 0.3759, 0.4090) −0.245 −1 II −2.842

Table 9.3: List of Weyl nodes in Sc6N2O5, showing only one Weyl node in each
pair of nodes related by time-reversal symmetry.
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Weyl and Nodal Line Semimetal RbPdBr3

Next, we discuss another structure which is only predicted computationally, ru-
bidium palladium tribromide (RbPdBr3) in the monoclinic P1m1 space group (no.
6) [178]. Its unit cell is given (in Ångström) by

a1 = ( 5.2891, 0, 0)
a2 = ( 0, 5.2962, 0)
a3 = (−0.0040, 0, 5.2922),

with atoms placed as follows (in reduced coordinates):

Rb (0.9937, 0.0000, 0.0010)
Pd (0.4849, 0.5000, 0.4959)
Br 1 (0.4873, 0.0000, 0.4960)
Br 2 (0.9853, 0.5000, 0.5010)
Br 3 (0.4888, 0.5000, 0.9960)

Notably, this structure is only slightly distorted from having a cubic lattice, with
inversion symmetry. In that case, of course the existence of simple Weyl points
would be prohibited by the product symmetry of inversion and time-reversal. If
this structure is indeed stable, it would be interesting to see whether its structure
is cubic or monoclinic.

To create a tight-binding model for RbPdBr3, we performed first-principles
calculations with an 8 × 8 × 8 k-point mesh and an energy cutoff of 520 eV. As
a basis for the tight-binding model, we choose s and p orbitals centered on the
rubidium atom, s and d orbitals centered on the palladium atom, and s and p
orbitals centered on the bromine atoms. Figure 9.11 shows the band structure
of tight-binding model, in comparison to the first-principles calculation. As with
CaCuO2, there is a significant difference in the higher conduction bands, which
should not influence the nodal structure.

We run the node finding algorithm on this tight-binding model of RbPdBr3
with a feature size of df = 0.002, and an initial mesh of size 8× 8× 8. As listed in
table 9.4 and shown in fig. 9.12, we find twelve type-II Weyl nodes and two small
nodal loops. The nodal features are concentrated around the k = (0.5, 0.5, 0.5)
point, and all lie more than 1.5 eV above the Fermi level. The two nodal lines
lie on the ky = 0.5 plane. Of the twelve Weyl nodes, eight form pairs of opposite
chirality, while the remaining four are further away from the nearest neighboring
Weyl point. An interesting feature are the two nodal lines, especially because they
are very small with less than 0.01 distance (in reduced reciprocal coordinates)
across. Nevertheless, they are topologically nontrivial, as shown by the Berry
phase calculation presented in fig. 9.13. Due to their small size, the nodal lines
could very easily be contracted and consequently. However, it should be noted
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Figure 9.11: Band structure of RbPdBr3 computed from first-principles (blue),
compared to the tight-binding values (orange). The tight-binding energy values
are shifted to have the same valence band maximum at Γ as the first-principles
results.

No. Position3 E − EF [eV] Chirality Type λmin(C)5

1 (0.4175, 0.4222, 0.5824) 1.545 −1 II −12.115
2 (0.4175, 0.5778, 0.5824) 1.545 1 II −12.115
3 (0.4410, 0.5553, 0.4408) 1.663 1 II −7.283
4 (0.4410, 0.4447, 0.4408) 1.663 −1 II −7.283
5 (0.4464, 0.5482, 0.4488) 1.694 −1 II −6.565
6 (0.4464, 0.4518, 0.4488) 1.694 1 II −6.565

Table 9.4: List of Weyl nodes in RbPdBr3, showing only one Weyl node in each
pair of nodes related by time-reversal symmetry.

that it is possible for the nodal lines to be stabilized and protected by additional
symmetries, for example with the mechanism described in ref. [179].
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Figure 9.12: Weyl nodes and nodal loops in RbPdBr3. Positive chirality Weyl
nodes are colored orange, and negative chirality ones blue. The nodal loops are
colored in green. No nodal features are present outside the box k ∈ [0.4, 0.6]3

shown here.

10 8 10 6 10 4 10 2

r

0

2

Figure 9.13: Berry phase on a circle around one of the two nodal loops found in
RbPdBr3, as a function of the circle radius. For large radii, the circle encloses
the nodal loop instead of linking with it, so the Berry phase is zero. For very
small radii (r < 2 · 10−9), the circle is not guaranteed to link the nodal loop due
to numerical inaccuracies. Since the Berry phase close to π for a large range of
intermediate radii, we can conclude that the nodal loop is topologically nontrivial.

123



9.3 Materials Applications

Weyl and Nodal Line Semimetal AsPd2

As a further material example we discuss AsPd2, in an orthorhombic structure
with space group Cmc21 (no. 36) [180]. The reduced unit cell is given by (in
Ångström)

a1 = (1.6656, −8.5965, 0.0000)
a2 = (1.6656, 8.5965, 0.0000)
a3 = (0.0000, 0.0000, 6.7049).

In reduced coordinates, the atoms take positions (x,−x, z) and (−x, x, z + 1/2)
for the following values of (x, z):

As 1 (0.2039, 0.7961, 0.2682)
As 2 (0.4416, 0.5584, 0.3027)
Pd 1 (0.3254, 0.6746, 0.0392)
Pd 2 (0.4150, 0.5850, 0.6731)
Pd 3 (0.1709, 0.8291, 0.8923)
Pd 4 (0.0383, 0.9617, 0.5102)

To create a tight-binding model for AsPd2, we run a first-principles calculation
using a 6×6×3 k-point mesh and a cutoff energy of 520 eV. The basis orbitals we
use are s and p orbitals centered on the arsenic atoms and d orbitals centered on the
palladium atom. The resulting first-principles and tight-binding band structures
are shown in fig. 9.14. While there is some visible difference between the first-
principles and tight-binding energy values around the Fermi level, they appear to
be the same qualitatively.

We run the node finding algorithm for a starting mesh of size 15 × 15 × 15,
and feature size df = 0.01 to find 20 Weyl points and two C - shaped nodal line as
shown in fig. 9.15 and listed in table 9.5. Due to the complex shape of the nodal
lines with paths in close proximity and acute angles, the refinement as described
in section 9.1 does not produce an accurate nodal point cloud describing this
nodal line. This can be corrected by using an improved set of starting points for
each refinement step. Instead of using a regular mesh, we use 30 points regularly
arranged on a sphere of radius 1.1 df around the point to be refined.

Of the 20 Weyl points, eight are of type I and twelve are of type II. They are
all slightly below the Fermi level, between −11 meV and −57 meV. The nodal
lines even cross the Fermi level, ranging from −0.264 to 0.055 eV. They lie at the
Brillouin zone boundary, on the kx = ky plane in reciprocal coordinates. Among
the material candidates presented here AsPd2 seems the most promising, both
because it has a relatively clean Fermi surface, and because the nodal features lie
close to the Fermi level.
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Figure 9.14: Band structure of AsPd2 computed from first-principles (blue), com-
pared to the tight-binding values (orange). The tight-binding energy values are
shifted to have the same valence band maximum at Γ as the first-principles results.

Figure 9.15: Weyl nodes and nodal loops in AsPd2. Positive chirality Weyl nodes
are colored orange, and negative chirality ones blue. The nodal loops are colored
in green.
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No. Position3 E − EF [eV] Chirality Type λmin(C)5

1 (0.0521, 0.3230, 1.0000) −0.011 −1 II −0.765
2 (0.0769, 0.3247, 0.0568) −0.039 1 II −0.018
3 (0.0769, 0.3247, 0.9432) −0.039 1 II −0.018
4 (0.1312, 0.3403, 0.0000) −0.057 −1 I 0.196
5 (0.1360, 0.5425, 0.0000) −0.047 −1 I 0.048
6 (0.3230, 0.0521, 0.0000) −0.011 1 II −0.765
7 (0.3247, 0.0769, 0.9432) −0.039 −1 II −0.018
8 (0.3247, 0.0769, 0.0568) −0.039 −1 II −0.018
9 (0.3403, 0.1312, 0.0000) −0.057 1 I 0.196
10 (0.4575, 0.8640, 0.0000) −0.047 1 I 0.048

Table 9.5: List of Weyl nodes in AsPd2, showing only one Weyl node in each pair
of nodes related by time-reversal symmetry.
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Weyl and Nodal Line Semimetal GaAu2

Finally, we discuss GaAu2 in the structure reported in ref. [181] which has the
same orthorhombic space group as AsPd2, Cmc21 (no. 36). The primitive unit
cell is given by

a1 = (1.6950, −9.0543, 0)
a2 = (1.6950, 9.0543, 0)
a3 = (0, 0, 6.9947).

In reduced coordinates, the atoms take positions (x,−x, z) and (−x, x, z + 1/2)
for the following values of (x, z):

Ga 1 (0.2908, 0.2276)
Ga 2 (0.0594, 0.1935)
Au 1 (0.0863, 0.8209)
Au 2 (0.1696, 0.4507)
Au 3 (0.3227, 0.5967)
Au 4 (0.4647, 0.9985)

To create a tight-binding model of GaAu2, we perform first-principles calcula-
tions using a 6×6×3 mesh of k-points, and an energy cutoff of 520 eV. As a basis
of the tight-binding model, we use s, p and d orbitals centered on the gallium
atoms, and s and d orbitals centered on the gold atoms. The resulting tight-
binding band structure is shown in fig. 9.16, in comparison to the first-principles
reference. It should be noted here that the tight-binding model shows significant
differences from the first-principles calculations, although the correct connectivity
of the bands seems to be preserved.

We run the node finding algorithm with an initial mesh size of size 20×20×20
and feature size df = 0.005. As for AsPd2, we use a spherical refinement mesh
with 30 starting points. We identify 68 type-II Weyl nodes and four nodal lines
in GaAu2, as listed in table 9.6 and shown in fig. 9.17. Of the Weyl nodes, the
closest to the Fermi level are eight nodes (nos. 1, 2, 22, 23 and their time-reversal
images), which lie 85 meV above the Fermi energy. The four nodal lines are again
located at the Brillouin zone boundary, on the kx = ky plane. Their energy ranges
between 356 meV and 83 meV below the Fermi level.
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9.3 Materials Applications
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Figure 9.16: Band structure of GaAu2 computed from first-principles (blue), com-
pared to the tight-binding values (orange). The tight-binding energy values are
shifted to have the same valence band maximum at Γ as the first-principles results.

Figure 9.17: Weyl nodes and nodal loops in GaAu2. Positive chirality Weyl nodes
are colored orange, and negative chirality ones blue. The nodal loops are colored
in green.
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Automated Classification of Band Degeneracies

No. Position3 E − EF [eV] Chirality Type λmin(C)5

1 (0.0166, 0.7129, 0.7986) 0.085 1 II −6.717
2 (0.0166, 0.7129, 0.2014) 0.085 1 II −6.717
3 (0.0210, 0.2578, 0.5311) 0.582 1 II −49.164
4 (0.0210, 0.2578, 0.4689) 0.582 1 II −49.164
5 (0.0349, 0.2115, 0.6087) 0.700 −1 II −0.398
6 (0.0349, 0.2115, 0.3913) 0.700 −1 II −0.398
7 (0.0790, 0.6191, 0.1331) −0.133 −1 II −2.479
8 (0.0790, 0.6191, 0.8669) −0.133 −1 II −2.479
9 (0.0798, 0.1500, 0.9582) 0.252 1 II −4.381
10 (0.0798, 0.1500, 0.0418) 0.252 1 II −4.381
11 (0.1220, 0.6229, 0.0000) −0.387 1 II −1.808
12 (0.1500, 0.0798, 0.0418) 0.252 −1 II −4.381
13 (0.1500, 0.0798, 0.9582) 0.252 −1 II −4.381
14 (0.2115, 0.0349, 0.3913) 0.700 1 II −0.398
15 (0.2115, 0.0349, 0.6087) 0.700 1 II −0.398
16 (0.2578, 0.0210, 0.5311) 0.582 −1 II −49.164
17 (0.2578, 0.0210, 0.4689) 0.582 −1 II −49.164
18 (0.2649, 0.3339, 0.1475) −0.361 1 II −5.826
19 (0.2649, 0.3339, 0.8525) −0.361 1 II −5.826
20 (0.2777, 0.3002, 0.8918) −0.360 −1 II −61.596
21 (0.2777, 0.3002, 0.1082) −0.360 −1 II −61.596
22 (0.2871, 0.9834, 0.2014) 0.085 −1 II −6.717
23 (0.2871, 0.9834, 0.7986) 0.085 −1 II −6.717
24 (0.2874, 0.3157, 0.9050) −0.463 −1 II −1.110
25 (0.2874, 0.3157, 0.0950) −0.463 −1 II −1.110
26 (0.3002, 0.2777, 0.1082) −0.360 1 II −61.596
27 (0.3002, 0.2777, 0.8918) −0.360 1 II −61.596
28 (0.3157, 0.2874, 0.0950) −0.463 1 II −1.110
29 (0.3157, 0.2874, 0.9050) −0.463 1 II −1.110
30 (0.3339, 0.2649, 0.8525) −0.361 −1 II −5.826
31 (0.3339, 0.2649, 0.1475) −0.361 −1 II −5.826
32 (0.3771, 0.8780, 0.0000) −0.387 −1 II −1.808
33 (0.3809, 0.9210, 0.8669) −0.133 1 II −2.479
34 (0.3809, 0.9210, 0.1331) −0.133 1 II −2.479

Table 9.6: List of Weyl nodes in GaAu2, showing only one Weyl node in each pair
of nodes related by time-reversal symmetry.
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9.4 Conclusion

9.4 Conclusion
We have created a two-step algorithm for classifying nodal features in materials.
In the first step, a root-finding method is used to create a cloud of nodal points.
In the second step, this point cloud is separated into individual features, and
their dimension and shape is analyzed. By combining this procedure with the
workflows for creating tight-binding models discussed in chapter 8, we were able to
classify several topological semimetals, both known and unknown. While the novel
topological semimetals presented here may not be particularly useful candidate
materials themselves, this demonstrates a significant simplification in the process of
identifying topological semimetals. By making the implementation of the methods
described here publicly available, we hope to enable both the study of topological
semimetal phases by non-specialists, and a targeted high-throughput search for
specific material properties. A possible improvement of the node finding algorithm
would be to adaptively increase the size of the initial mesh. This could be based
on whether the current mesh still finds new nodal features.
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10
Conclusion and Outlook

The topics we have studied in this thesis fall broadly in one of two categories:
First, the study of topological semimetal phases in real materials. And second,
the creation of algorithms enabling and enhancing this study.

On the first subject, we start in chapter 4, where we review our discovery of the
type-II Weyl state. This is continued in chapter 6, where we studied the effect of
magnetic field on transition metal dipnictides. By approximating this effect as a
Zeeman term, we find that magnetic field induces the presence of Weyl nodes. An
open question in this research is whether these Weyl nodes persist when a more
accurate model of the magnetic field effect is used. Also, it is not known whether
these Weyl points are responsible for the reduced or negative magnetoresistance
observed in these compounds. This could be investigated with transport calcula-
tions. And finally, in chapter 9 we study several different materials and classify
their nodal structure topologically. We find an abundance of Weyl nodes, which
indicates that this state might be quite common in both semimetals and metals
when allowed by symmetry.

The creation of algorithms simplifying the study of topological semimetals –
which arguably make out the more significant part of this thesis – starts in chap-
ter 5, where we introduce a general algorithm for computing phase diagrams. The
algorithm is based on a quadtree approach, and can be seen as a multidimensional
generalization of binary search. We thoroughly analyze the convergence properties
of the algorithm, defining a criterion for convergence based on the initial starting
grid. Since this algorithm is not specific to topological phase diagrams, we ex-
pect it to be suitable for a wide variety of applications. An example application
is shown in chapter 6, where we use it to calculate phase diagrams showing the
number of Weyl points as a function of magnetic field strength. A tool simplifying
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the study of the electronic structure problem in general is presented in chapter 7.
We study the problem of generating k·p models which conserve a given set of crys-
tal symmetries. By expressing this problem in terms of vector spaces, we enable
automatically solving it with a computer algebra system. The subsequent chap-
ter 8 treats a similar problem, the construction of symmetric tight-binding models
from first-principles calculations. We introduce an approach to symmetrizing ex-
isting tight-binding models based on performing a group average. Based on the
Wannier90 code and the AiiDA framework, we implement automated workflows
that perform this construction of tight-binding models. To eliminate the need for
manually choosing energy windows used by Wannier90, we implement an opti-
mization routine to automatically select the appropriate values by comparing the
resulting band structure to a first-principles reference. And finally, in chapter 9
we implement a two-step algorithm for classifying nodal features in band struc-
tures. In the first step, we use a root-finding approach to create a cloud of nodal
points. In the second step, the features present in these point clouds are extracted
and analyzed. This is applied to the study of topological semimetals, calculating
topological invariants to establish the nontrivial nature of these nodes.

By making all these tools publicly available and publishing comprehensive doc-
umentation, we aim to make the task of studying topological semimetal states
approachable to non-specialists.
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