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Abstract
The transitionmetal dipnictides TaAs2, TaSb2,NbAs2 andNbSb2 have recently sparked interest for
exhibiting giantmagnetoresistance.While the exact nature of themagnetoresistance in thesematerials
is still under active investigation, there are experimental results indicating that it is of the anisotropic
negative variety.We study the effect ofmagnetic fields on the band structure topology of these
materials by applying Zeeman splitting. In the absence of amagneticfield, wefind that thematerials
areweak topological insulators, which is in agreementwith previous studies.When themagnetic field
is applied, wefind that type-IIWeyl points form. This result is found first from a symmetry argument,
and then numerically for a k p· model of TaAs2 and a tight-bindingmodel ofNbSb2. This effect
could be of help in the search for an explanation of the anomalousmagnetoresistance in these
materials.

1. Introduction

Weyl nodes are the point-like crossings of two energy bandswith linear dispersion. Locally, they can be
described by aHamiltonian of the form

 å s= k Ak 1
i j

i i j j
,

, ( )

where Îi x y z, ,{ }and Îj x y z0, , ,{ }. Topologically, aWeyl node can be characterized as being a quantized
source or sink of Berry curvature, depending on its chirality [1]. Due to their quantized nature,Weyl points can
only be created or annihilated in pairs of opposite chirality.

It was recently shown [2] thatWeyl nodes come in two types. Type-IWeyl fermions have a point-like Fermi
surface.When amagnetic field is applied, they exhibit a chiral Landau level [3–5] regardless of themagnetic field
direction.When this chiral Landau level crosses the Fermi level, it can be a source of reducedmagnetoresistance
[6–11]. Type-IIWeyl fermions, on the other hand, have an energy spectrum that is tilted by a strong s0

contribution to theHamiltonian (equation (1)). As a consequence, the Fermi surface opens, and the chiral
anomaly is anisotropic, appearing only for certainmagnetic field directions.

The inversion symmetry Pmaps aWeyl node at point k onto aWeyl node of opposite chirality at-k.
Similarly, the time-reversal symmetry  maps aWeyl point at k onto one at-k, but without changing its
chirality. Consequently, in the presence of the product symmetry  * P ,Weyl nodes aremapped onto
themselves butwith opposite chirality. This four-fold degenerate crossing, consisting of two superimposedWeyl
points of opposite chirality, is known as aDirac node. UnlikeWeyl points, they are not protected from gapping
by any quantized topological charge. Consequently, additional symmetries are needed to stabilizeDirac nodes.

In centrosymmetric non-magneticmaterials, the presence of both inversion and time-reversal symmetry
only allows forDirac nodes to form.Weyl nodes are not possible unless the product symmetry  * P is broken.

Recently, transitionmetal dipnictides of the type AB2 (Aä{Ta,Nb}, Bä{As, Sb}) have gained a lot of
attention [12–19] for their giantmagnetoresistance. Thesematerials are semimetals, but without a direct closure
of the band gap. Consequently, they do not host anyWeyl orDirac points.
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The exact nature ofmagnetoresistance in thesematerials—especially the dependency on the direction of the
magnetic field—is still under active investigation. Negativemagnetoresistance has been observed experimentally
forNbAs2 [17, 18], TaAs2 [17] andTaSb2 [17, 20]. Anomalous, albeit not negative,magnetoresistance has been
observed forNbSb2 [12] andTaAs2 [15]. However, there are also experiments which point to the opposite, which
is that there is no negativemagnetoresistance in thesematerials. In [16], negativemagnetoresistance was
observed atfirst, but was then determined to be an artifact of themeasurement setup.

In the following, we propose amechanism forWeyl nodes to appear in thesematerials under the influence of
amagnetic field. The chiral anomaly associatedwith theseWeyl nodes is a possible source of negative
magnetoresistance. Such an appearance ofWeyl points under amagnetic field has recently been proposed in
[21]. Themechanismwithwhich theWeyl points appear, however, is a different one: in this work, theWeyl
points appear from a previously gapped state, while [21] discussesWeyl points arising from the splitting of a
four-fold crossing.

The paper is structured as follows: in thefirst section, the atomic and electronic structure of the four
compounds is described. A four-bandHamiltonian for TaAs2 is derived from the symmetry considerations and
fitted to the band structure. In the second section, the topology of the band structure is studied, first without a
magnetic field and then by applying a Zeeman term.Wefind that this leads to the appearance ofWeyl points.

2. Atomic and electronic structure of AB2 compounds

2.1. Atomic structure
In the following, the atomic structure of TaAs2 [22], TaSb2 [23], NbSb2 [24] andNbAs2 [25] is described.

The reduced unit cell of AB2 compounds has the general form

=
= -
= -

a a b

a a b

a c d

, , 0

, , 0

, 0, 2

1

2

3

( )
( )
( ) ( )

with the parameters as given in table 1 [22, 24].
Each unit cell contains two formula units. The atoms are located at the generalWyckoff positions
- - -x x y x x y, , and , ,( ) ( ) for x y,( ), as shown in table 2 [22, 24].
Figure 1 shows the reduced unit cell and first BZ of TaAs2. The k-point path alongwhich the bandstructure

calculations are performed is indicated. On the basis reciprocal to that of equation (2), the special k-points are
given by

G =
=
=
=
=
=

A
L

M
V
Y

0, 0, 0
0, 0, 0.5
0.5, 0, 0.5
0.5, 0.5, 0.5
0.5, 0, 0
0.5, 0.5, 0 . 3

( )
( )
( )
( )
( )
( ) ( )

Table 1.Unit cell dimensions (inÅ) for AB2 compounds.

a b c d

TaAs2 4.6655 1.6915 3.8420 6.7330

TaSb2 5.11 1.822 4.1950 7.1502

NbAs2 4.684 1.698 3.8309 6.7933

NbSb2 5.1198 1.8159 4.1705 7.2134

Table 2.Atomic positions x y,( ).

A B1 B2

TaAs2 0.157, 0.1959( ) 0.4054, 0.1082( ) 0.1389, 0.5265( )
TaSb2 0.152, 0.19( ) 0.405, 0.113( ) 0.147, 0.535( )
NbAs2 0.1574, 0.1965( ) 0.4059, 0.1084( ) 0.14, 0.528( )
NbSb2 0.1521, 0.1903( ) 0.4051, 0.1127( ) 0.1475, 0.5346( )
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2.2. Electronic structure
The electronic structure calculations were performed inVASP [26], with the projector augmented-wave (PAW)
[27, 28]pseudopotentials. The PBE approximation [29]was used, and spin–orbit couplingwas included in the
potentials. The self-consistentfield (SCF) calculations were performed on a ´ ´11 11 5Γ-centered grid for
TaAs2, and a ´ ´10 10 5Γ-centered grid forNbSb2. The energy cut-off given in the potential files was used,
which is 293.2 eV forNbAs2 andNbSb2, and 223.7 eV for TaAs2 andTaSb2.

Additionally, the PBE calculations were tested against the accurateHSE06 hybrid functional [30, 31]. The
hybrid SCF calculations for the band structures were performed on aΓ-centered ´ ´6 6 4 grid for all
materials. For the generation of theWannier tight-bindingmodel ofNbSb2, aΓ-centered ´ ´10 10 5 grid
was used.

The band structure of TaAs2 andNbSb2 is shown infigure 2. Bothmaterials exhibit a pair of electron and
hole pockets near theM-point, where theminimumband gap is about 318 meV (120 meV without hybrid
functionals) in the case of TaAs2, 151 meV (98 meV) for TaSb2, 261 meV (22 meV) forNbAs2, and 67 meV
(18 meV) in the case ofNbSb2. Amore complete calculation of the band structure can be found, for example,
in [32].

Figure 1. (a)The reduced unit cell of TaAs2. (b)The first BZ of TaAs2. The k-point path and its projection onto the 010 surface are
indicated.
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2.3. Symmetry operations and the k p· model
TheAB2 compounds studied here have C m2 symmetry (space group 12). The rotation axis is along the
Cartesian y-axis. In reduced coordinates, the symmetrymatrices are as follows:

Figure 2.The band structures of AB2 compounds. The inset shows electron and hole pockets aroundM. The orange line represents the
calculations using hybrid functionals. (a and b)TaAs2, (c and d)TaSb2, (e and f)NbAs2, (g and h)NbSb2.
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• Identity = ´E 3 3

• Rotation
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From thefirst-principles wave-functions, the representations corresponding to the two highest valence and
two lowest conduction bands at theM-point were determined using theWIEN2k code [34, 35]. Theywere
found to be G G+ +,3 4 and G G- -,3 4 , respectively. Their characters are shown in table 3, which comes from table 15
on page 35 inKoster et al [33]. Consequently, the symmetry representations in these four bands are given by
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0 0 0
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• Time-reversal

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ =

-

-
K

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

.ˆ

For each of the symmetry operations g, the constraint

 = - -D g g D gk k 41 1( ) ( ) ( ) ( ) ( )

is imposed on the 4×4Hamiltonian, whereD(g) is the symmetry representation. By applying these constraints
on the general formof a four-bandHamiltonian

 å s s= Ä
Î

Ck k , 5
i j x y z

ij i j
, 0, , ,

( ) ( )( ) ( )
{ }

wefind theHamiltonian to be of the form

 s s s s
s s s s
s s s s

= Ä + Ä
+ Ä + Ä
+ Ä + Ä

C C

C C

C C

k k k
k k

k k , 6

xx x x

xy x y xz x z

y y z z

00 0 0

0 0 0 0

( ) ( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( ) ( )

Table 3.Character table for the relevant double
group representations ofC2m [33].

E C2y P My

G+
3 1 i 1 i

G+
4 1 -i 1 -i

G-
3 1 i −1 -i

G-
4 1 -i −1 i
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where the C kij ( ) are given up to the second order in * = - Mk k (in reduced coordinates) by

* * *

* * * * * *

*

= + +

+ + -

+

+

-

C C C k k

C k k C k k k k

C k

k

7

x y
x y

xy
x y

xz yz
x z y z

z
z

00 00
1

00
2 2

00 00

00
2

2 2

2

( ) (( ) ( ) )

( )

( ) ( )

* * *

* * * * * *

*

= + +

+ + -

+

+

-

C C C k k

C k k C k k k k

C k

k

8

z z z
x y

x y

z
xy

x y z
xz yz

x z y z

z
z

z

0 0
1

0
2 2

0 0

0
2

2 2

2

( ) (( ) ( ) )

( )

( ) ( )

* * * *= - +-C C k k C kk 9xx xx
x y

x y xx
z

z( ) ( ) ( )

* * * *= - +-C C k k C kk 10xy xy
x y

x y xy
z

z( ) ( ) ( )

* * *= ++C C k kk 11xz xz
x y

x y( ) ( ) ( )

* * *= ++C C k kk . 12y y
x y

x y0 0( ) ( ) ( )

These 16 parameters were numerically fitted to the band structure of TaAs2 using theSciPy [36] package to
obtain the values in table 4. The resulting band structure around theM-point is shown infigure 3. Comparing it
to the band structure obtained from first-principles reveals that the approximation is accurate in the immediate
vicinity of theM-point, but breaks down at around 6% of the distance along the lineM–A. Importantly, the
minimumband gap is not preserved in thismodel. Nevertheless, themodel can be used to qualitatively study
effects in TaAs2, owing to the fact that it contains the correct symmetry representations.

Table 4.Parameters of the 4×4Hamiltonian of TaAs2 aroundM up to
the second order.

eV[ ] C00
1 = 7.066 Cz0

1 = -0.224

eV[ Å] +Cxz
x y = 1.272 +Cy

x y
0 = 1.270

-Cxx
x y = -0.061 -Cxy

x y = -1.999

Cxx
z = -0.554  Cxy

z = -0.253

eV 2[ Å]  +C x y
00

2 2
= -71.21 +Cz

x y
0

2 2
= 56.30

C xy
00 = -137.1 Cz

xy
0 = 123.1

-C xz yz
00 = 1.52 -Cz

xz yz
0 = -1.49

C z
00

2
= -0.84 Cz

z
0

2
= -1.88

Figure 3.TheTaAs2 band structure of the k p· model (thick orange line), compared to the first-principles result (black lines).
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3. Band structure topology

In this section, we describe the band structure topology and the influence of themagnetic field. First, we describe
the topology in the absence of themagnetic field for all four compounds. Then, we show thatWeyl points appear
under a sufficientmagnetic field. This result is shownfirst for the k p· model of TaAs2 derived in section 2.3,
and then for a tight-bindingmodel ofNbSb2 derived from first-principles.

3.1. Band structure topologywithoutmagneticfields
In the absence of amagnetic field, there is no direct band gap closure inAB2 compounds. Since the valence bands
thus form awell-definedmanifold, they can be classified, just like insulators, according to the topology of these
valence bands. Because time-reversal symmetry is fulfilled, a 2 classification is possible.

All compoundswere found to beweak topological insulators, with 2 indices 0; 111( ). That is, all time-
reversal invariant planes =k 0, 0.5i have a non-trivial 2 indexD = 1. This result was derived fromfirst-
principles using theZ2Pack code [37], and agrees with previous studies [15, 17, 32]. The corresponding
evolution of theWannier charge centers is shown, for the case of TaAs2, infigure 4.

Figure 5 shows the surface density of states for a slab of TaAs2, with surfaces parallel to themirror plane
perpendicular to theCartesian y-axis (the light blue plane shown infigure 1). The presence of topological surface
states confirms the conclusion that thematerial is a weak topological insulator. The surface spectrumwas
calculated by the iterativeGreen’s function [38], whichwas implemented inWannierTools [39].

3.2. The effect of Zeeman splitting on the k p· model for TaAs2
Herewe study the effects of themagnetic field onTaAs2 by adding a Zeeman splitting term to the k p· model
derived in section 2.3 (equation (6)). The splitting term is given by

 s s s s s sD = Ä + Ä + Äc c c , 13x y y z z x0 0 0 ( )

where ci is the strength of the Zeeman splitting induced by themagnetic field in that direction, that is

å m=c g H . 14i
j

ij jB ( )

This assumes that the g-factor is equal for all bands. The limitations of this approximation are discussed in
section 3.4.

Figure 4.TheWannier charge center evolution for the time-reversal invariant planes of TaAs2. (a) kx=0, (b) kx=0.5, (c) ky=0, (d)
ky=0.5, (e) kz=0 and (f) kz=0.5.
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3.2.1.Magnetic field along the rotation axis ŷ
When amagneticfield is applied along the rotation axis ŷ , the Zeeman term equation (13) takes the form

 s sD = Äc . 15y z0 ( )

This termpreserves all spatial symmetries of the system, breaking only time-reversal.
Along theM–A line, theCxx andCyy contributions to theHamiltonian vanish since * *=k kx y and * =k 0z .

Consequently, the energy eigenvalues are given by

=  + +E C c C C Ck k k k k . 16y xz y z00
2

0
2

0
2( ) ( ) ( ) ( ) ( ) ( )

TheZeeman term counteracts the original splitting (square root term), such that for a sufficientmagnetic field
therewill be a direct band gap closure. Away from theM−A line, the band gap remains open, giving rise to a
Weyl point.

When the Zeeman splitting is gradually switched on, two pairs ofWeyl points form at about =c 0.11 eVy .
Increasing the Zeeman splitting leads to a separation between the two nodes in a pair, with one node each
moving towards theM-point. Finally, at »c 0.25 eVy , these two nodesmeet atM and annihilate. This process
is shown infigure 6.

The existence of theseWeyl points was confirmed by verifying that the nodes are a source or a sink of Berry
curvature. For this purpose, the Chern number of spheres surrounding the points was calculated by tracking the
hybridWannier charge centers (HWCCs) on loops around the sphere [2, 37, 40, 41], using theZ2Pack software
[37]. Figure 7 shows the evolution of the sumof theHWCC for two of the four nodes found at =c 0.12 eVy ,
demonstrating that the two points areWeyl nodes of opposite chirality.

3.2.2. General magnetic field direction
Finally, the effects of amagnetic field in a general directionwere studied. It turns out that even though such a
field breaks the spatial symmetries of the system,Weyl nodes still appear under a strong enoughmagnetic field.
When amagneticfield is applied in an x̂- or ẑ-direction, a single pair ofWeyl points emerges from theM-point.
TheseWeyl nodes are located on the = -k kx y plane, as shown in table 5.

Figure 8 shows the number ofWeyl points as a function of the Zeeman splitting. To obtain this phase
diagram, the candidateWeyl points were identified using a quasi-Newton algorithm tofind theminima in the
band gap (usingSciPy.optimize.minimize [36]), for different initial guesses. In the second step, the
Chern number on the small sphere (radius - -10 4 1Å ) surrounding the candidate points was evaluated (using
Z2Pack [37]), keeping only the points with a non-zero Chern number. Finally, duplicate points were
eliminated by checkingwhether two points lie within the diameter of the sphere of one another.

3.3. The effect of Zeeman splitting on the tight-bindingmodel forNbSb2
Having studied the effects of Zeeman splitting on the k p· model for TaAs2, we now study amore realistic tight-
bindingmodel forNbSb2, derived from afirst-principles calculationwith hybrid functionals using the

Figure 5.The surface density of states of TaAs2 on the 010 surface, along the k-point path shown infigure 1.
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Wannier90 code [42, 43]. NbSb2was chosen because it has the smallest direct band gap of the fourmaterials,
making it themost promising candidate for hostingWeyl points at realisticmagnetic field strength.

The Zeeman splitting for thismodel can again be expressed by adding the corresponding terms to the
Hamiltonian

   s s sD = Ä + Ä + Ä´ ´ ´c c c , 17x x y y z z22 22 22 22 22 22 ( )

where the change in the splitting terms (compared to equation (13)) is due to the different orbital basis used for
the tight-bindingmodel.We search forWeyl points between the last valence band and the first conduction band.

First, we study the effect of applying amagnetic field in the y-direction. Figure 9 shows the effect of this
splitting along theM−A line. For »c 0.06 eVy , two pairs ofWeyl points appear close to theM−A line. The
reason these points are not exactly on the line is because the crystal symmetry is brokenwhen constructing the
Wannier-based tight-bindingmodel [42, 43]. Apart from the numerical difference, this effect is analogous to the
case of the k p· model for TaAs2, where the two pairs ofWeyl points appeared at =c 0.11 eVy .

Table 6 shows theWeyl point positions, chirality and type for selected values of Zeeman splitting. It shows
thatWeyl points appear even at smaller values of cy away from theM−A line. This is a crucial difference from the

Figure 6.The band gap of TaAs2 in the * =k 0z plane for different values of themagnetic field in the y-direction, calculated from the
k p· model. A dark spot indicates the presence of aWeyl point. (a)Nomagnetic field; there are noWeyl points present. (b)

=c 0.11 eVy ; two pairs ofWeyl points have appeared on the kx=ky line. (c) =c 0.2 eVy ; the pair ofWeyl pointsmoves further
apart. (d) =c 0.25 eVy ; one pair ofWeyl points has annihilated atM, leaving twoWeyl points.

Figure 7.The evolution of the sumof theHWCCon spheres surrounding theWeyl points at =c 0.12 eVy splitting. (a)TheWeyl
point at =k 0.5247, 0.5247, 0.5( ), having positive chirality = +C 1, (b) theWeyl point at =k 0.53258, 0.53258, 0.5( )with
negative chirality = -C 1.
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k p· model, which is only valid near theM-point. Furthermore, allWeyl points found for these splitting values
are of type-II [2]. Type-IIWeyl points have a tilted energy spectrum,making their Fermi surface open instead of
point-like. As a consequence, their chiral anomaly—and their effect onmagnetoresistance—is expected to be
anisotropic.

Finally, a phase diagramwas calculated showing the number ofWeyl points as a function of themagnetic
field (see figure 10). Unlike for the k p· model, the number ofWeyl points keeps increasing when the applied
Zeeman term grows stronger. Again, the reason for this difference is thatWeyl points also form far away from
theM-point, where the k p· approximation is no longer applicable.

For some values of splitting, the phase diagram shows an odd number ofWeyl points, which is physically
impossible. The reason for this is that the numerical procedure used to identify the number ofWeyl pointsmay
notfind aWeyl point if it is too close to another one. Since this problemonly occurs rarely (seefigure 11), the
phase diagram is still valid overall. Also, the procedure ensures that noWeyl point can be counted twice, so the
phase diagram represents a lower limit for the real number ofWeyl points. Thus, the general result, inwhich the
number ofWeyl points increases with stronger Zeeman splitting, remains valid.

Table 5.The position * = - Mk k (in reduced coordinates) and
chirality of theWeyl points for Zeeman splitting in the x̂- and
ẑ -direction.

Splitting eV[ ]  Weyl position *k Chirality

cx=0.225 -0.0042, 0.0042, 0.00093( )  −1

- -0.0042, 0.0042, 0.00093( )  1

cx=0.25 -0.025, 0.025, 0.0054( ) −1

- -0.025, 0.025, 0.0054( ) 1

cx=0.3 -0.044, 0.044, 0.0098( ) −1

- -0.044, 0.044, 0.0098( ) 1

cz=0.225 - -0.0011, 0.0011, 0.018( )  −1

-0.0011, 0.0011, 0.018( )  1

cz=0.25 - -0.0066, 0.0066, 0.11( ) −1

-0.0066, 0.0066, 0.11( ) 1

cz=0.3 - -0.012, 0.012, 0.18( ) −1

-0.012, 0.012, 0.18( ) 1

Figure 8.Aphase diagram showing the number ofWeyl points in the k p· model of the TaAs2 as a function of the Zeeman splitting
(in eV).
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3.4. Limitations of themodel for themagneticfield
In the previous sections, the effect of themagnetic fieldwasmodeled by applying Zeeman splitting to themodel
Hamiltonian. The discussionwas simplified by assuming that the g-factor was equal for all energy bands, and
independent of k . Here, we discuss how the resultsmight change if this assumption is notmade.

If the g-factor is k-dependent, but still the same for all energy bands, the results abovewill change
quantitatively, but not qualitatively. The reason for this is that theWeyl node that appears at a specific k-point
will still be there, but for a differentmagnetic field. That is, the order inwhich theWeyl nodes at different k-
points appearmight change, but not the overall picture of an increasing number ofWeyl points with a stronger
magnetic field.

The same is true if the g-factor varies for different energy bands, as long as the sign of the g-factor remains the
same. Because the appearance ofWeyl points is due to the relative Zeeman splitting between the last valence and
first electron bands, it does notmatter howmuch the splitting of each band contributes.

If the g-factors in the relevant bands have opposite signs, however, there is a qualitative change in behavior.
This is illustrated in the followingwith the example of the k p· model of TaAs2, discussed in sections 2.3, 3.2.
To account for the opposite sign of the g-factor for the valence and conduction bands, the Zeeman splitting term
(equation (13)) is changed to

 s s s s s sD = Ä + Ä + Äc c c . 18x z y y z z z z x ( )

With cy splitting, the energy bands on themirror plane are then given by

=  + +E C c C C Ck k k k k . 19y xx xy z00
2 2

0
2( ) ( ) ( ) ( ) ( ) ( )

As in equation (16), the Zeeman term counteracts the original splitting. The difference from the previous case is
that this equation holds on an entire plane in reciprocal space instead of just a line. As a consequence, we can
expect the appearance of a nodal linewith sufficient Zeeman splitting. Indeed, a nodal line appears for
c 0.2242 eVy , as shown infigure 12. The Berry phase on a closed path around this nodal linewas calculated to

beπ, using theZ2Pack [37] software. This verifies the topological nature of the nodal line.
In conclusion, the qualitative result obtained above remains intact when the g-factors are assumed to be k-

dependent, and different for the valence and conduction bands, as long as they keep the same sign. Amore
adequatemodel of themagnetic field is needed to establish the exact qualitative and quantitative nature of the

Figure 9.The band structure of the tight-bindingmodel forNbSb2 along theM−A line (a)without Zeeman splitting, and (b)with
=c 0.06 eVy Zeeman splitting.
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Table 6.TheWeyl point positions (in reduced coordinates), chirality and
type for different values of Zeeman splitting in the tight-bindingmodel for
NbSb2.

Splitting eV[ ]  Position k Chirality Type

cx=0.045 (0.4393, 0.4460, 0.5004) +1 II

0.4359, 0.4444, 0.5026( ) −1 II

0.5641, 0.5556, 0.4974( ) +1 II

0.5607, 0.5540, 0.4996( ) −1 II

cy=0.03 0.3670, 0.5141, 0.0977( )  +1 II

0.3655, 0.5142, 0.1004( ) −1 II

0.6345, 0.4858, 0.8997( ) +1 II

0.6330, 0.4858, 0.9023( ) −1 II

cy=0.04 0.3724, 0.5116, 0.0890( ) +1 II

0.3627, 0.5135, 0.1055( ) −1 II

0.6373, 0.4865, 0.8945( ) +1 II

0.6276, 0.4884, 0.9110( ) −1 II

0.9028, 0.0340, 0.5451( ) +1 II

0.9018, 0.0354, 0.5390( ) −1 II

0.0982, 0.9646, 0.4610( ) +1 II

0.0974, 0.9658, 0.4545( ) −1 II

cy=0.06 0.3791, 0.5068, 0.0775( ) +1 II

0.3592, 0.5131, 0.1108( ) −1 II

0.6407, 0.4869, 0.8892( ) +1 II

0.6211, 0.4929, 0.9222( ) −1 II

0.9033, 0.0328, 0.5532( ) +1 II

0.9006, 0.0364, 0.5314( ) −1 II

0.0994, 0.9636, 0.4686( ) +1 II

0.0968, 0.9671, 0.4467( ) −1 II

0.4493, 0.4555, 0.5031( ) +1 II

0.4309, 0.4320, 0.4825( ) −1 II

0.5691, 0.5680, 0.5175( ) +1 II

0.5507, 0.5445, 0.4969( ) −1 II

cz=0.0475 0.4494, 0.4384, 0.4853( ) +1 II

0.4420, 0.4366, 0.4816( ) −1 II

0.5580, 0.5634, 0.5184( ) +1 II

0.5506, 0.5616, 0.5147( ) −1 II

Figure 10.The phase diagram showing the number ofWeyl points as a function of Zeeman splitting (in eV) for the tight-binding
model forNbSb2.
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topological phases with the appliedmagnetic field. The current results indicate thatWeyl nodes will appear, at
least for some directions ofmagnetic field.

4. Conclusions

We studied the topological phase of transitionmetal dipnictides of the type AB2 (Aä{Ta,Nb}, Bä{As, Sb}),
with andwithout an externalmagnetic field. In the absence of amagnetic field, we found—in accordance with
previous results [15, 17]—that thesematerials can be classified as weak topological insulators, despite having an
indirect band gap closure.

The effect of themagnetic fieldwas studied by applying Zeeman splitting, andwe found thatWeyl points can
appear.We showed this resultfirst from theoretical considerations on a four-band k p· model, and numerically
on a k p· model of TaAs2 and a tight-bindingmodel ofNbSb2. In the tight-bindingmodel, we found the
number ofWeyl points to increase with a growingmagnetic field. For specific values of Zeeman splitting, the
type ofWeyl points in the tight-bindingmodel was studied, and theywere all found to be of type-II.

The appearance of such field-inducedWeyl points could help explain the reduced or negative
magnetoresistivity in thesematerials. However, it is unclear whether theWeyl points studied here appear at a
magnetic field that is realistic to observe in experiments. Further studies, in particular, to obtain a realistic g-
factor andmore reliable data for the direct band gap, are required to accurately estimate the requiredmagnetic
field. Furthermore, it is known thatmodeling a strongmagnetic fieldwith only Zeeman splitting is not sufficient,
and amore accuratemodel should be considered. Finally, the effect of theseWeyl points on the

Figure 11.Aphase diagram showingwhether the number ofWeyl points shown infigure 10 is even (physically possible) and odd
(non-physical). The odd phases are a relict of the numerical evaluation of the phase.

Figure 12.The band gap of TaAs2 on themirror planewith Zeeman splitting as given in equation (18). (a)At »c 0.2242 eVy , a nodal
line appears at theM-point. (b)The nodal line expands for stronger splitting ( =c 0.23 eVy ).
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magnetoresistance should be calculated. This is influenced by the orientation of the type-IIWeyl points, and
their distance from the Fermi level.

Consequently, there are three open questionswhich require further investigation: first, whether the
appearance offield-inducedWeyl points is realistic in these AB2 compounds; second, if theseWeyl points do
appear, whether they alone are responsible for the experimentally observed behavior ofmagnetoresistance or if
there are other effects; finally, whether there are other compounds which contain the same kind offield-induced
Weyl points, possibly appearing already at aweakermagnetic field.

Acknowledgments

Wewould like to thankDRodic andMKönz for helpful discussions. The authors were supported by ERC
AdvancedGrant SIMCOFE,Microsoft Research, and the SwissNational Science Foundation through the
National Competence Centers in ResearchMARVEL andQSIT. Calculationswere performed on theMönch
cluster of ETHZurich.

References

[1] VolovikGE 1987Zeros in the Fermion spectrum in superfluid systems as diabolical points JETP Lett. 46 98–102
[2] SoluyanovAA,GreschD,Wang Z,WuQ, TroyerM,Dai X andAndrei Bernevig B 2015Type-IIWeyl semimetalsNature 527 495–8
[3] Adler L S 1969Axial-vector vertex in spinor electrodynamics Phys. Rev. 177 2426–38
[4] Bell J S and JackiwR 1969APCACpuzzle: p gg0 in theσ-modelNuovoCimento 60 47–61
[5] NielsenHB andNinomiyaM1983TheAdler-Bell-Jackiw anomaly andWeyl Fermions in a crystal Phys. Lett.B 130 389–96
[6] AbrikosovAA 1998Quantummagnetoresistance Phys. Rev.B 58 2788
[7] SonDT and Spivak BZ 2013Chiral anomaly and classical negativemagnetoresistance ofWeylmetalsPhys. Rev.B 88 104412
[8] HuangX et al 2015Observation of the chiral-anomaly-induced negativemagnetoresistance in 3DWeyl semimetal TaAs Phys. Rev.X 5

031023
[9] Xiong J, Kushwaha SK, Liang T, Krizan JW,HirschbergerM,WangW,Cava R J andOngNP2015 Evidence for the chiral anomaly in

theDirac semimetal Na3Bi Science 350 413–6
[10] Arnold F et al 2016Negativemagnetoresistance without well-defined chirality in theWeyl semimetal TaPNature Comm 7
[11] YangX, Liu Y,Wang Z, Zheng Y andXuZ-a 2015Chiral anomaly induced negativemagnetoresistance in topologicalWeyl semimetal

NbAs arXiv:1506.03190
[12] WangK,Graf D, Li L,Wang L and Petrovic C 2014Anisotropic giantmagnetoresistance inNbSb2 Sci. Rep. 4 7328
[13] WangY-Y, YuQ-H,GuoP-J, LiuK andXia T-L 2016Resistivity plateau and extremely largemagnetoresistance inNbAs2 andTaAs2

Phys. Rev.B 94 041103
[14] WuD et al 2016Giant semiclassicalmagnetoresistance in highmobility TaAs2 semimetalAppl. Phys. Lett. 108 042105
[15] LuoY,McDonaldRD, Rosa P F S, Scott B,WakehamN,GhimireN J, Bauer ED, Thompson JD andRonning F 2016Anomalous

electronic structure andmagnetoresistance in TaAs2 Sci. Rep. 6 27294
[16] YuanZ, LuH, Liu Y,Wang J and Jia S 2016 Largemagnetoresistance in compensated semimetals TaAs2 andNbAs2 Phys. Rev.B 93

184405
[17] Li Y,WangZ, LuY, YangX, Shen Z, Sheng F, FengC, Zheng Y andXuZ-A 2016Negativemagnetoresistance in topological semimetals

of transition-metal dipnictides with nontrivial 2 indices arXiv:1603.04056
[18] Shen B,DengX, Kotliar G andNiN2016 Fermi surface topology and negative longitudinalmagnetoresistance observed in the

semimetal NbAs2Phys. Rev.B 93 195119
[19] WangZ, Li Y, LuY, Shen Z, Sheng F, FengC, Zheng Y andXuZ2016Topological phase transition induced extreme

magnetoresistancein TaSB2 arXiv:1603.01717
[20] Li Y, Li L,Wang J,Wang T, XuX, Xi C, CaoC andDai J 2016Resistivity plateau and negativemagnetoresistance in the topological

semimetal TaSb2Phys. Rev.B 94 121115
[21] Cano J, Bradlyn B,WangZ,HirschbergerM,OngNP andBernevig BA2016The chiral anomaly factory: CreatingWeyls with amagnetic

field arXiv:1604.08601
[22] LingRG andBelinC 1981Affinement de la structure cristalline du diarseniure de tantaleCRAcad. Sci. Paris 292 891–3
[23] Hulliger F 1964New representatives of theNbAs2 andZrAs2 structuresNature 204 775
[24] Lomnytska Y F andBerezovets VV2005 Phase relations in theNb-Ni-Sb system Inorg.Mater. 41 1166–71
[25] BenschWandHeidW1995NbAs2Acta Crystallogra. 51 2205–7
[26] KresseG and Furthmüller J 1996 Efficiency of ab-initio total energy calculations formetals and semiconductors using a plane-wave

basis setComput.Mater. Sci. 6 15–50
[27] Blöchl P E 1994 Projector augmented-wavemethodPhys. Rev.B 50 17953
[28] KresseG and JoubertD 1999 Fromultrasoft pseudopotentials to the projector augmented-wavemethod Phys. Rev.B 59 1758
[29] Perdew J P, BurkeK and ErnzerhofM1996Generalized gradient approximationmade simplePhys. Rev. Lett. 77 3865
[30] Heyd J, Scuseria G E and ErnzerhofM2003Hybrid functionals based on a screenedCoulomb potential J. Chem. Phys. 118 8207–15
[31] KrukauAV,VydrovOA, IzmaylovA F and Scuseria G E 2006 Influence of the exchange screening parameter on the performance of

screened hybrid functionals J. Chem. Phys. 125 224106
[32] XuC,Chen J, ZhiG-X, Li Y,Dai J andCaoC 2016 Electronic structures of transitionmetal dipnictides XPn2 (X=Ta,Nb; Pn=P, As,

Sb)Phys. Rev.B 93 195106
[33] KosterG F,Dimmock JO,Wheeler RG and StatzH 1963Properties of the Thirty-two Point Groups 24 (Cambridge,MA:MITPress)
[34] Blaha P, SchwarzK,MadsenGKH,KvasnickaD and Luitz J 2001WIEN2kTechnical UniversitätWienAustria
[35] SchwarzK, Blaha P andMadsenGKH2002 Electronic structure calculations of solids using theWIEN2k package formaterial sciences

Computer Phys. Comm. 147 71–6
[36] Jones E et al 2001 SciPy: Open Source Scientific Tools for Python (Accessed: 2015-05-26)

14

New J. Phys. 19 (2017) 035001 DGresch et al

https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1103/PhysRevB.58.2788
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1038/ncomms11615
http://arxiv.org/abs/1506.03190
https://doi.org/10.1038/srep07328
https://doi.org/10.1103/PhysRevB.94.041103
https://doi.org/10.1063/1.4940924
https://doi.org/10.1038/srep27294
https://doi.org/10.1103/PhysRevB.93.184405
https://doi.org/10.1103/PhysRevB.93.184405
http://arxiv.org/abs/1603.04056
https://doi.org/10.1103/PhysRevB.93.195119
http://arxiv.org/abs/1603.01717
https://doi.org/10.1103/PhysRevB.94.121115
http://arxiv.org/abs/1604.08601
https://doi.org/10.1038/204775a0
https://doi.org/10.1007/s10789-005-0281-z
https://doi.org/10.1007/s10789-005-0281-z
https://doi.org/10.1007/s10789-005-0281-z
https://doi.org/10.1107/S0108270195007062
https://doi.org/10.1107/S0108270195007062
https://doi.org/10.1107/S0108270195007062
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.2404663
https://doi.org/10.1103/PhysRevB.93.195106
https://doi.org/10.1016/S0010-4655(02)00206-0
https://doi.org/10.1016/S0010-4655(02)00206-0
https://doi.org/10.1016/S0010-4655(02)00206-0


[37] GreschD, Autès G, YazyevOV, TroyerM,Vanderbilt D, Bernevig BA and Soluyanov AA 2016Z2Pack: Numerical implementation of
hybridWannier centers for identifying topologicalmaterials arXiv:1610.08983

[38] SanchoMPL, Sancho JML, Sancho JML andRubio J 1985Highly convergent schemes for the calculation of bulk and surface Green
functions J. Phys. F:Met. Phys. 15 851

[39] WuQGandZhang SN2015Wannier Tools https://github.com/quanshengwu/wannier_tools
[40] WangZ,GreschD, SoluyanovAA,XieW,Kushwaha S,Dai X, TroyerM,Cava R J andBernevig BA 2016MoTe2: a type-IIWeyl

topologicalmetalPhys. Rev. Lett. 117 056805
[41] AutèsG,GreschD, TroyerM, Soluyanov AA andYazyevOV2016Robust type-IIWeyl semimetal phase in transitionmetal

diphosphides XP2 (X=Mo,W)Phys. Rev. Lett. 117 066402
[42] MostofiAA, Yates J R, Lee Y- S, Souza I, Vanderbilt D andMarzari N 2008wannier90: A tool for obtainingmaximally-localised

Wannier functionsComputer Phys. Comm. 178 685–99
[43] MostofiAA, Yates J R, Pizzi G, Lee Y-S, Souza I, Vanderbilt D andMarzari N 2014Anupdated version ofwannier90: a tool for

obtainingmaximally-localisedWannier functionsComputer Phys. Comm. 185 2309–10

15

New J. Phys. 19 (2017) 035001 DGresch et al

http://arxiv.org/abs/1610.08983
https://doi.org/10.1088/0305-4608/15/4/009
https://github.com/quanshengwu/wannier_tools
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2014.05.003
https://doi.org/10.1016/j.cpc.2014.05.003
https://doi.org/10.1016/j.cpc.2014.05.003

	1. Introduction
	2. Atomic and electronic structure of AB2 compounds
	2.1. Atomic structure
	2.2. Electronic structure
	2.3. Symmetry operations and the k&middot;p model

	3. Band structure topology
	3.1. Band structure topology without magnetic fields
	3.2. The effect of Zeeman splitting on the k&middot;p model for TaAs2
	3.2.1. Magnetic field along the rotation axis y&Hat;
	3.2.2. General magnetic field direction

	3.3. The effect of Zeeman splitting on the tight-binding model for NbSb2
	3.4. Limitations of the model for the magnetic field

	4. Conclusions
	Acknowledgments
	References



