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Abstract

The transition metal dipnictides TaAs,, TaSb,, NbAs, and NbSb, have recently sparked interest for
exhibiting giant magnetoresistance. While the exact nature of the magnetoresistance in these materials
is still under active investigation, there are experimental results indicating that it is of the anisotropic
negative variety. We study the effect of magnetic fields on the band structure topology of these
materials by applying Zeeman splitting. In the absence of a magnetic field, we find that the materials
are weak topological insulators, which is in agreement with previous studies. When the magnetic field
is applied, we find that type-II Weyl points form. This result is found first from a symmetry argument,
and then numerically for a k - p model of TaAs, and a tight-binding model of NbSb,. This effect
could be of help in the search for an explanation of the anomalous magnetoresistance in these
materials.

1. Introduction

Weyl nodes are the point-like crossings of two energy bands with linear dispersion. Locally, they can be
described by a Hamiltonian of the form

Hk = ZkiAi,jUj (1)

ij

wherei € {x, y, z}and j € {0, x, y, z}. Topologically, a Weyl node can be characterized as being a quantized
source or sink of Berry curvature, depending on its chirality [1]. Due to their quantized nature, Weyl points can
only be created or annihilated in pairs of opposite chirality.

It was recently shown [2] that Weyl nodes come in two types. Type-I Weyl fermions have a point-like Fermi
surface. When a magnetic field is applied, they exhibit a chiral Landau level [3—5] regardless of the magnetic field
direction. When this chiral Landau level crosses the Fermi level, it can be a source of reduced magnetoresistance
[6—11]. Type-1I Weyl fermions, on the other hand, have an energy spectrum that is tilted by a strong o
contribution to the Hamiltonian (equation (1)). As a consequence, the Fermi surface opens, and the chiral
anomaly is anisotropic, appearing only for certain magnetic field directions.

The inversion symmetry P maps a Weyl node at point k onto a Weyl node of opposite chirality at —k.
Similarly, the time-reversal symmetry 7” maps a Weyl point at k onto one at —k, but without changing its
chirality. Consequently, in the presence of the product symmetry 7 % P, Weyl nodes are mapped onto
themselves but with opposite chirality. This four-fold degenerate crossing, consisting of two superimposed Weyl
points of opposite chirality, is known as a Dirac node. Unlike Weyl points, they are not protected from gapping
by any quantized topological charge. Consequently, additional symmetries are needed to stabilize Dirac nodes.

In centrosymmetric non-magnetic materials, the presence of both inversion and time-reversal symmetry
only allows for Dirac nodes to form. Weyl nodes are not possible unless the product symmetry 7 * P is broken.

Recently, transition metal dipnictides of the type AB, (A €{Ta, Nb}, B €{As, Sb}) have gained alot of
attention [12—19] for their giant magnetoresistance. These materials are semimetals, but without a direct closure
of the band gap. Consequently, they do not host any Weyl or Dirac points.

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Table 1. Unit cell dimensions (in A) for AB, compounds.

a b c d
TaAs, 4.6655 1.6915 3.8420 6.7330
TaSb, 5.11 1.822 4.1950 7.1502
NbAs, 4.684 1.698 3.8309 6.7933
NbSb, 5.1198 1.8159 4.1705 7.2134

Table 2. Atomic positions (x, y).

A Bl B2
TaAs, (0.157, 0.1959) (0.4054, 0.1082) (0.1389, 0.5265)
TaSb, (0.152, 0.19) (0.405, 0.113) (0.147, 0.535)
NbAs, (0.1574, 0.1965) (0.4059, 0.1084) (0.14, 0.528)
NbSb, (0.1521, 0.1903) (0.4051, 0.1127) (0.1475, 0.5346)

The exact nature of magnetoresistance in these materials—especially the dependency on the direction of the
magnetic field—is still under active investigation. Negative magnetoresistance has been observed experimentally
for NbAs;, [17, 18], TaAs, [17] and TaSb, [17, 20]. Anomalous, albeit not negative, magnetoresistance has been
observed for NbSb, [12] and TaAs, [15]. However, there are also experiments which point to the opposite, which
is that there is no negative magnetoresistance in these materials. In [16], negative magnetoresistance was
observed at first, but was then determined to be an artifact of the measurement setup.

In the following, we propose a mechanism for Weyl nodes to appear in these materials under the influence of
amagnetic field. The chiral anomaly associated with these Weyl nodes is a possible source of negative
magnetoresistance. Such an appearance of Weyl points under a magnetic field has recently been proposed in
[21]. The mechanism with which the Weyl points appear, however, is a different one: in this work, the Weyl
points appear from a previously gapped state, while [21] discusses Weyl points arising from the splitting of a
four-fold crossing.

The paper is structured as follows: in the first section, the atomic and electronic structure of the four
compounds is described. A four-band Hamiltonian for TaAs, is derived from the symmetry considerations and
fitted to the band structure. In the second section, the topology of the band structure is studied, first without a
magnetic field and then by applying a Zeeman term. We find that this leads to the appearance of Weyl points.

2. Atomic and electronic structure of AB, compounds

2.1. Atomic structure
In the following, the atomic structure of TaAs, [22], TaSb, [23], NbSb, [24] and NbAs, [25] is described.
The reduced unit cell of AB, compounds has the general form

alz(a) b) 0)
a,=(—a, b, 0)
a3 =(—¢, 0, d) @)

with the parameters as given in table 1 [22, 24].

Each unit cell contains two formula units. The atoms are located at the general Wyckoff positions
(x, —x, y) and (—x, x, —y) for (x, y),asshown in table 2 [22, 24].

Figure 1 shows the reduced unit cell and first BZ of TaAs,. The k-point path along which the bandstructure
calculations are performed is indicated. On the basis reciprocal to that of equation (2), the special k-points are
given by

I = (0, 0, 0)

A=(0,0,0.5)

L=1(0.5, 0, 0.5)
M = (0.5, 0.5, 0.5)

V =(0.5, 0, 0)

Y = (0.5, 0.5, 0). 3)




10P Publishing

NewJ. Phys. 19 (2017) 035001 D Gresch etal
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Figure 1. (a) The reduced unit cell of TaAs,. (b) The first BZ of TaAs,. The k-point path and its projection onto the 010 surface are
indicated.

2.2. Electronic structure

The electronic structure calculations were performed in VASP [26], with the projector augmented-wave (PAW)
[27, 28] pseudopotentials. The PBE approximation [29] was used, and spin—orbit coupling was included in the
potentials. The self-consistent field (SCF) calculations were performedonall x 11 x 5I'-centered grid for
TaAs,,andal0 x 10 x 5I'-centered grid for NbSb,. The energy cut-off given in the potential files was used,
whichis 293.2 eV for NbAs, and NbSb,, and 223.7 eV for TaAs, and TaSb,.

Additionally, the PBE calculations were tested against the accurate HSE06 hybrid functional [30, 31]. The
hybrid SCF calculations for the band structures were performed onaI'-centered 6 x 6 x 4 grid forall
materials. For the generation of the Wannier tight-binding model of NbSb,, aI'-centered 10 x 10 x 5grid
was used.

The band structure of TaAs, and NbSb, is shown in figure 2. Both materials exhibit a pair of electron and
hole pockets near the M-point, where the minimum band gap is about 318 meV (120 meV without hybrid
functionals) in the case of TaAs,, 151 meV (98 meV) for TaSb,, 261 meV (22 meV) for NbAs,, and 67 meV
(18 meV)in the case of NbSb,. A more complete calculation of the band structure can be found, for example,
in [32].
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Figure 2. The band structures of AB, compounds. The inset shows electron and hole pockets around M. The orange line represents the
calculations using hybrid functionals. (a and b) TaAs,, (c and d) TaSb,, (e and f) NbAs,, (gand h) NbSb,.

2.3. Symmetry operations and the k - p model
The AB, compounds studied here have C2/m symmetry (space group 12). The rotation axis is along the
Cartesian y-axis. In reduced coordinates, the symmetry matrices are as follows:
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Table 3. Character table for the relevant double
group representations of C,,, [33].

E Gy P M,
T+ 1 i 1 i
ry 1 —i 1 —i
Iy 1 i -1 —i
r, 1 —i -1 i

« Identity E = I3
01 O
* RotationCy, =1 0 0
00 —1

° ParltyP: —H3><3

0 —-10
* Mirror M, = PC,, =|—-1 0 O]
0 0 1

From the first-principles wave-functions, the representations corresponding to the two highest valence and
two lowest conduction bands at the M-point were determined using the WIEN2k code [34, 35]. They were
foundtobe I'y, I'; and I';, T'y, respectively. Their characters are shown in table 3, which comes from table 15
on page 35 in Koster et al [33]. Consequently, the symmetry representations in these four bands are given by

M Identlty E= ]I4><4

i 0 0 0
. lo -0 o
Rotation C,, = 00 i o
0 0 0 —i
10 0 O
. 101 0 O
Parity P = 00 -1 0
00 0 -1
i 0 0 O
. 0 -1 0 0
- M M, = PC,, =
irror M, 2 0 0 —i 0
0 0 0 1
0 —-10 O
. 11 0 0 0 |p
Time-reversal 7 = 00 0 -1 K.
0 0 1 0

For each of the symmetry operations g, the constraint
H&) =D(@H(E 'WDE™" 4)

isimposed onthe4 x 4 Hamiltonian, where D(g) is the symmetry representation. By applying these constraints
on the general form of a four-band Hamiltonian

HK = > Ci®g® o, %)
5,j€{0,x,y,z}
we find the Hamiltonian to be of the form
H(k) = Coo (k) (00 ® 09) + Crx (K) (01 @ 0%)
+ ny(k) (0x ® Uy) + Cr (k) (0x ® 07)
+ CyO (k)(Uy b2y U()) + Cz() (k)(az b2y 00)) (6)
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Table 4. Parameters of the 4 x 4 Hamiltonian of TaAs, around M up to

D Gresch etal

the second order.
[eV] Coo = 7.066 ch = —0.224
[eVA] cxr =1.272 Gy =1.270
cx = —0.061 cyr = —1.999
CZ, = —0.554 (o = —0.253
[eVA] cyt =—71.21 cyt =56.30
cy =—137.1 cy =123.1
CE =152 cxr =—1.49
2 2
Cé = —0.84 c3 =-1.88
4

/\,\/\/”\\
N T —

- \% =
NS
N X

Y M A

Figure 3. The TaAs, band structure of the k - p model (thick orange line), compared to the first-principles result (black lines).

where the Cj; (k) are given up to the second order in k* = k — M (in reduced coordinates) by

Coo (k) = Cly + Coo ™ (D2 + (KDD)
+ Cod kfky + Cog 7 (kS — kK
22 *ky\2
+ Cgo (k)

Coo(k¥) = Cly + CH 7 (KD + (K
+ CH kK + CF R (K — Kk
+ C (k)
Cax (k¥ = CL7 (kY — k) + CL kS
Coy (k%) = C3 7V (kY — k) + C K
Cee (%) = CE7 (kY + k)

Cyo(k*) = CV (kF + K)).

7

3

C)

(10)

(an

12)

These 16 parameters were numerically fitted to the band structure of TaAs, using the SciPy [36] package to
obtain the values in table 4. The resulting band structure around the M-point is shown in figure 3. Comparing it
to the band structure obtained from first-principles reveals that the approximation is accurate in the immediate
vicinity of the M-point, but breaks down at around 6% of the distance along the line M—A. Importantly, the
minimum band gap is not preserved in this model. Nevertheless, the model can be used to qualitatively study
effects in TaAs,, owing to the fact that it contains the correct symmetry representations.

6
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Figure 4. The Wannier charge center evolution for the time-reversal invariant planes of TaAs,. (a) k, = 0, (b) k. = 0.5,(c)k, = 0,(d)
k, = 0.5,(e)k, = Oand () k, = 0.5.

3. Band structure topology

In this section, we describe the band structure topology and the influence of the magnetic field. First, we describe
the topology in the absence of the magnetic field for all four compounds. Then, we show that Weyl points appear
under a sufficient magnetic field. This result is shown first for the k - p model of TaAs, derived in section 2.3,
and then for a tight-binding model of NbSb, derived from first-principles.

3.1. Band structure topology without magnetic fields

In the absence of a magnetic field, there is no direct band gap closure in AB, compounds. Since the valence bands
thus form a well-defined manifold, they can be classified, just like insulators, according to the topology of these
valence bands. Because time-reversal symmetry is fulfilled, a Z, classification is possible.

All compounds were found to be weak topological insulators, with Z, indices 0; (111). Thatis, all time-
reversal invariant planes k; = 0, 0.5 have a non-trivial Z, index A = 1. This result was derived from first-
principles using the Z2Pack code [37], and agrees with previous studies [15, 17, 32]. The corresponding
evolution of the Wannier charge centers is shown, for the case of TaAs,, in figure 4.

Figure 5 shows the surface density of states for a slab of TaAs,, with surfaces parallel to the mirror plane
perpendicular to the Cartesian y-axis (the light blue plane shown in figure 1). The presence of topological surface
states confirms the conclusion that the material is a weak topological insulator. The surface spectrum was
calculated by the iterative Green’s function [38], which was implemented in WannierTools [39].

3.2. The effect of Zeeman splitting on the k - p model for TaAs,
Here we study the effects of the magnetic field on TaAs, by adding a Zeeman splitting term to the k - p model
derived in section 2.3 (equation (6)). The splitting term is given by

AH = ;00 ® 0y + ¢,00 ® 0, + ;00 @ 0, (13)

where ¢; is the strength of the Zeeman splitting induced by the magnetic field in that direction, that is

J

This assumes that the g-factor is equal for all bands. The limitations of this approximation are discussed in
section 3.4.
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Figure 5. The surface density of states of TaAs, on the 010 surface, along the k-point path shown in figure 1.

3.2.1. Magnetic field along the rotation axis y
When a magnetic field is applied along the rotation axis 7, the Zeeman term equation (13) takes the form

AH = cy00 ® 0. (15)
This term preserves all spatial symmetries of the system, breaking only time-reversal.

Along the M-A line, the C,.and C,, contributions to the Hamiltonian vanish since k; = kf and k) = 0.
Consequently, the energy eigenvalues are given by

E®®) = Coo(K) £ ¢, F /Cre (02 + Cyo(K)? + Coo(K)?. (16)

The Zeeman term counteracts the original splitting (square root term), such that for a sufficient magnetic field
there will be a direct band gap closure. Away from the M—A line, the band gap remains open, giving rise to a
Weyl point.

When the Zeeman splitting is gradually switched on, two pairs of Weyl points form at about ¢, = 0.11 eV.
Increasing the Zeeman splitting leads to a separation between the two nodes in a pair, with one node each
moving towards the M-point. Finally, at ¢, ~ 0.25 eV, these two nodes meet at M and annihilate. This process
is shown in figure 6.

The existence of these Weyl points was confirmed by verifying that the nodes are a source or a sink of Berry
curvature. For this purpose, the Chern number of spheres surrounding the points was calculated by tracking the
hybrid Wannier charge centers (HWCCs) on loops around the sphere [2, 37, 40, 41], using the Z2Pa ck software
[37]. Figure 7 shows the evolution of the sum of the HWCC for two of the four nodes found at ¢, = 0.12 eV,
demonstrating that the two points are Weyl nodes of opposite chirality.

3.2.2. General magnetic field direction

Finally, the effects of a magnetic field in a general direction were studied. It turns out that even though such a
field breaks the spatial symmetries of the system, Weyl nodes still appear under a strong enough magnetic field.
When a magnetic field is applied in an %- or Z-direction, a single pair of Weyl points emerges from the M-point.
These Weyl nodes arelocated on the k, = — , plane, as shown in table 5.

Figure 8 shows the number of Weyl points as a function of the Zeeman splitting. To obtain this phase
diagram, the candidate Weyl points were identified using a quasi-Newton algorithm to find the minima in the
band gap (using SciPy.optimize.minimize [36]), for different initial guesses. In the second step, the
Chern number on the small sphere (radius 104 A" surrounding the candidate points was evaluated (using
Z2Pack[37]), keeping only the points with a non-zero Chern number. Finally, duplicate points were
eliminated by checking whether two points lie within the diameter of the sphere of one another.

3.3. The effect of Zeeman splitting on the tight-binding model for NbSb,
Having studied the effects of Zeeman splitting on the k - p model for TaAs,, we now study a more realistic tight-
binding model for NbSb,, derived from a first-principles calculation with hybrid functionals using the

8
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Figure 6. The band gap of TaAs, in the k. = 0 plane for different values of the magnetic field in the y-direction, calculated from the
k - p model. A dark spot indicates the presence of a Weyl point. (a) No magnetic field; there are no Weyl points present. (b)

¢y = 0.11 eV;two pairs of Weyl points have appeared on the k. = k, line. (c) ¢, = 0.2 eV the pair of Weyl points moves further
apart. (d) ¢, = 0.25 eV one pair of Weyl points has annihilated at M, leaving two Weyl points.

(a) (b)

2T

S

0 0

Figure 7. The evolution of the sum of the HWCC on spheres surrounding the Weyl points at ¢, = 0.12 eV splitting. (a) The Weyl
pointat k = (0.5247, 0.5247, 0.5), having positive chirality C = +1, (b) the Weyl pointat k = (0.53258, 0.53258, 0.5) with
negative chirality C = —1.

Wannier90 code [42, 43]. NbSb, was chosen because it has the smallest direct band gap of the four materials,
making it the most promising candidate for hosting Weyl points at realistic magnetic field strength.

The Zeeman splitting for this model can again be expressed by adding the corresponding terms to the
Hamiltonian

AH = 05 @ Inawar + ¢,0, @ Inaxan + 20 ® Dypynas (17)

where the change in the splitting terms (compared to equation (13)) is due to the different orbital basis used for
the tight-binding model. We search for Weyl points between the last valence band and the first conduction band.

First, we study the effect of applying a magnetic field in the y-direction. Figure 9 shows the effect of this
splitting along the M—A line. For ¢, = 0.06 eV, two pairs of Weyl points appear close to the M—A line. The
reason these points are not exactly on the line is because the crystal symmetry is broken when constructing the
Wannier-based tight-binding model [42, 43]. Apart from the numerical difference, this effect is analogous to the
case of the k - p model for TaAs,, where the two pairs of Weyl points appeared at ¢, = 0.11 eV.

Table 6 shows the Weyl point positions, chirality and type for selected values of Zeeman splitting. It shows
that Weyl points appear even at smaller values of ¢, away from the M—A line. This is a crucial difference from the

9
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Table 5. The position k* = k — M (in reduced coordinates) and
chirality of the Weyl points for Zeeman splitting in the X- and
Z-direction.

Splitting [eV] Weyl position k* Chirality
¢ = 0.225 (—0.0042, 0.0042, 0.00093) -1
(0.0042, —0.0042, —0.00093) 1
¢ =025 (—0.025, 0.025, 0.0054) -1
(0.025, —0.025, —0.0054) 1
=03 (—0.044, 0.044, 0.0098) -1
(0.044, —0.044, —0.0098) 1
c, = 0.225 (0.0011, —0.0011, —0.018) -1
(—0.0011, 0.0011, 0.018) 1
;= 0.25 (0.0066, —0.0066, —0.11) -1
(—0.0066, 0.0066, 0.11) 1
;=103 (0.012, —0.012, —0.18) -1
(—0.012, 0.012, 0.18) 1
(a) (b)
0.3
4
&% 9 2
0
-0.3
0
Cz
Figure 8. A phase diagram showing the number of Weyl points in the k - p model of the TaAs, as a function of the Zeeman splitting
(in eV).

k - p model, which is only valid near the M-point. Furthermore, all Weyl points found for these splitting values
are of type-1I[2]. Type-II Weyl points have a tilted energy spectrum, making their Fermi surface open instead of
point-like. As a consequence, their chiral anomaly—and their effect on magnetoresistance—is expected to be
anisotropic.

Finally, a phase diagram was calculated showing the number of Weyl points as a function of the magnetic
field (see figure 10). Unlike for the k - p model, the number of Weyl points keeps increasing when the applied
Zeeman term grows stronger. Again, the reason for this difference is that Weyl points also form far away from
the M-point, where the k - p approximation is no longer applicable.

For some values of splitting, the phase diagram shows an odd number of Weyl points, which is physically
impossible. The reason for this is that the numerical procedure used to identify the number of Weyl points may
not find a Weyl point if it is too close to another one. Since this problem only occurs rarely (see figure 11), the
phase diagram is still valid overall. Also, the procedure ensures that no Weyl point can be counted twice, so the
phase diagram represents a lower limit for the real number of Weyl points. Thus, the general result, in which the
number of Weyl points increases with stronger Zeeman splitting, remains valid.

10
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Figure 9. The band structure of the tight-binding model for NbSb, along the M—A line (a) without Zeeman splitting, and (b) with
¢, = 0.06 eV Zeeman splitting.

3.4. Limitations of the model for the magnetic field

In the previous sections, the effect of the magnetic field was modeled by applying Zeeman splitting to the model
Hamiltonian. The discussion was simplified by assuming that the g-factor was equal for all energy bands, and
independent of k. Here, we discuss how the results might change if this assumption is not made.

Ifthe g-factor is k-dependent, but still the same for all energy bands, the results above will change
quantitatively, but not qualitatively. The reason for this is that the Weyl node that appears at a specific k-point
will still be there, but for a different magnetic field. That is, the order in which the Weyl nodes at different k-
points appear might change, but not the overall picture of an increasing number of Weyl points with a stronger
magnetic field.

The same is true if the g-factor varies for different energy bands, as long as the sign of the g-factor remains the
same. Because the appearance of Weyl points is due to the relative Zeeman splitting between the last valence and
first electron bands, it does not matter how much the splitting of each band contributes.

If the g-factors in the relevant bands have opposite signs, however, there is a qualitative change in behavior.
This is illustrated in the following with the example of the k - p model of TaAs,, discussed in sections 2.3, 3.2.
To account for the opposite sign of the g-factor for the valence and conduction bands, the Zeeman splitting term
(equation (13)) is changed to

AH =0, ® 0y + 0, @ 0, + ¢;0;, @ Oy, (18)

With ¢, splitting, the energy bands on the mirror plane are then given by

E(K) = Coo(k) £ ¢, F /Crx(k)? + Cyy(K)? + Cop(k)?. (19)

Asin equation (16), the Zeeman term counteracts the original splitting. The difference from the previous case is
that this equation holds on an entire plane in reciprocal space instead of just a line. As a consequence, we can
expect the appearance of a nodal line with sufficient Zeeman splitting. Indeed, a nodal line appears for
¢y 2, 0.2242 eV, asshownin figure 12. The Berry phase on a closed path around this nodal line was calculated to
be 7, using the Z2Pack [37] software. This verifies the topological nature of the nodal line.

In conclusion, the qualitative result obtained above remains intact when the g-factors are assumed to be k-
dependent, and different for the valence and conduction bands, as long as they keep the same sign. A more
adequate model of the magnetic field is needed to establish the exact qualitative and quantitative nature of the
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Table 6. The Weyl point positions (in reduced coordinates), chirality and
type for different values of Zeeman splitting in the tight-binding model for

Position k

Chirality

Type

(0.4393, 0.4460, 0.5004)
(0.4359, 0.4444, 0.5026)
(0.5641, 0.5556, 0.4974)
(0.5607, 0.5540, 0.4996)

+1
-1
+1
-1

II
II
II
II

(0.3670, 0.5141, 0.0977)
(0.3655, 0.5142, 0.1004)
(0.6345, 0.4858, 0.8997)
(0.6330, 0.4858, 0.9023)

+1
-1
+1
-1

II
II
1I
II

(0.3724, 0.5116, 0.0890)
(0.3627, 0.5135, 0.1055)
(0.6373, 0.4865, 0.8945)
(0.6276, 0.4884, 0.9110)
(0.9028, 0.0340, 0.5451)
(0.9018, 0.0354, 0.5390)
(0.0982, 0.9646, 0.4610)
(0.0974, 0.9658, 0.4545)

+1
-1
+1
-1
+1
-1
+1
-1

II
1II
I
I
1II
I
I
II

(0.3791, 0.5068, 0.0775)
(0.3592, 0.5131, 0.1108)
(0.6407, 0.4869, 0.8892)
(0.6211, 0.4929, 0.9222)
(0.9033, 0.0328, 0.5532)
(0.9006, 0.0364, 0.5314)
(0.0994, 0.9636, 0.4686)
(0.0968, 0.9671, 0.4467)
(0.4493, 0.4555, 0.5031)
(0.4309, 0.4320, 0.4825)
(0.5691, 0.5680, 0.5175)
(0.5507, 0.5445, 0.4969)

+1
-1
+1
-1
+1
-1
+1
-1
+1
-1
+1
-1

1I
1II
II
1I
1II
II
1II
II
II
II
1II
II

NbSb,.
Splitting [eV]
¢ = 0.045
¢, = 0.03
¢, = 0.04
¢, = 0.06
¢, = 0.0475

(0.4494, 0.4384, 0.4853)
(0.4420, 0.4366, 0.4816)
(0.5580, 0.5634, 0.5184)
(0.5506, 0.5616, 0.5147)

+1
-1
+1
-1

II
II
II
1T

D Gresch etal

(a)
0.08

-0.08

model for NbSb,.

(b)

Figure 10. The phase diagram showing the number of Weyl points as a function of Zeeman splitting (in eV) for the tight-binding
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(a) (b)
0.08
odd
S 9
even
-0.08 L
0 0
Cx ¢
Figure 11. A phase diagram showing whether the number of Weyl points shown in figure 10 is even (physically possible) and odd
(non-physical). The odd phases are a relict of the numerical evaluation of the phase.

(a) (b)

AE [eV]
0.1
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" —3
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1076

-0.1 1077
0 0

K = —k; K=k

Figure 12. The band gap of TaAs, on the mirror plane with Zeeman splitting as given in equation (18). (a) At ¢, ~ 0.2242 eV, anodal
line appears at the M-point. (b) The nodal line expands for stronger splitting (c, = 0.23 eV).

topological phases with the applied magnetic field. The current results indicate that Weyl nodes will appear, at
least for some directions of magnetic field.

4, Conclusions

We studied the topological phase of transition metal dipnictides of the type AB, (A €{Ta, Nb},B €{As, Sb}),
with and without an external magnetic field. In the absence of a magnetic field, we found—in accordance with
previous results [15, 17]—that these materials can be classified as weak topological insulators, despite having an
indirect band gap closure.

The effect of the magnetic field was studied by applying Zeeman splitting, and we found that Weyl points can
appear. We showed this result first from theoretical considerations on a four-band k - p model, and numerically
onak - p model of TaAs, and a tight-binding model of NbSb,. In the tight-binding model, we found the
number of Weyl points to increase with a growing magnetic field. For specific values of Zeeman splitting, the
type of Weyl points in the tight-binding model was studied, and they were all found to be of type-II.

The appearance of such field-induced Weyl points could help explain the reduced or negative
magnetoresistivity in these materials. However, it is unclear whether the Weyl points studied here appear ata
magnetic field that is realistic to observe in experiments. Further studies, in particular, to obtain a realistic g-
factor and more reliable data for the direct band gap, are required to accurately estimate the required magnetic
field. Furthermore, it is known that modeling a strong magnetic field with only Zeeman splitting is not sufficient,
and a more accurate model should be considered. Finally, the effect of these Weyl points on the
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magnetoresistance should be calculated. This is influenced by the orientation of the type-1I Weyl points, and
their distance from the Fermi level.

Consequently, there are three open questions which require further investigation: first, whether the
appearance of field-induced Weyl points is realistic in these AB, compounds; second, if these Weyl points do
appear, whether they alone are responsible for the experimentally observed behavior of magnetoresistance or if
there are other effects; finally, whether there are other compounds which contain the same kind of field-induced
Weyl points, possibly appearing already at a weaker magnetic field.
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